LS-13:
DISTRIBUTED FILE SYSTEMS

Distributed (or Networked) File Systems

Distributed (Networked) File Systems

Allow a centralized file server to export a file-system to multiple clients.
Redirecting user to the right copy of data.

Provide file level access, and raw blocks access.

Clustered file-systems also exist, where multiple servers work in together.

DFS Architectures a

as Client-Server Architecture (Centralized)

User in
m NFS (Network File System) New York
= CIFS/SMB g

(Windows Common Internet FS/Samba protocol)
m Andrew FS
as Cluster-Based Arch (Less Centralized)
m GFS (Global File System, Google FS) Namespace

K

Server in
New York

DFS Replication

as Symmetric Arch (Fully Distributed) @ » /
m DHT-based (Distributed Hash Table) @ﬁ a
User in
London

Comparison of distributed file systems

Operating System Concepts 12.2

-8

Server in
London

ys©2019

https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems

Distributed FS: Client-Server

m A Client-Server distributed file system enables clients to access files
stored on one or more remote file servers.

m Two Models:
1. Upload/Download Model (entire files)
2. Remote Access Model (remote file operations — RPC)

NFS /2, /3, /4

Developed by Sun in the 1984.

NFS is OS-independent FS: client and server.

Client requests are implemented as remote procedure calls (RPCs).
Stateless. Means server and client can reboot without the other noticing.
A server, nfsd, exports filesystems as described in /etc/exports.

The server can be in user-space or in the kernel-space.

CIFS/SMB

m CIFS — Windows Common Internet File System.

B Poorly documented.

B SMB (or Samba) reimplements it, originally reverse-engineered.

B For speeding file access use Simple Distributing files across servers >
Operating System Concepts 12.3

1. File moved to client

Client Server

T =

2. Accesses are

done on client 3. When client is done,

file is returned to
server

1. The Upload/Download Model

Client Server
<
Requests from \
client to access File stays
remote file on server

2. The Remote Access Model
File block of file a File block of file e

distributing whole files across several servers ys©2019

Distributed FS: Cluster based

B With very large data collections, a simple client-server approach is not going to work.
B For speeding up file accesses, apply striping techniques by files can be fetched in parallel.

Example of GFS: Google FS
How does it work?

B A cluster has a master node, which
ONLY keeps meta information of

files

B Abigfile is splited into CHUNKS, a
CHUNK of size 64Mbs.

B Chunks are spread on many chunk
servers

B More details on GFS:

@ Chunks are replicated for Redundancy.

Operating System Concepts

GFS client

l file name, chunk index

striping files for parallel access

-

Chunk ID, range

contact address

Chunk data

Master does not keep up-to-date of chunk locations.
A Chunks server knows what exactly it stores.
If client retrieval failed(low probability), ask Master again, and master update latest info from chunk servers.

Chunk server conducts the backup/replication.
Master node is kept out of this loop, bottle neck problem is solved.

124

4

Master
A
Instructions Chunk-server state
.
Chunk server Chunk server Chunk server
Linux file Linux file Linux fite
system system system

I/0 Performance of a GFS is pretty good and Scalability is good as well.

File update. Client pushes back updated file chunk to corresponding chunk server.

ys©2019

Distributed FS: Symmetric

Example of DHS: Ivy Node where a file system is rooted
B Peer-to-Peer. Multi user Read/Write. L
® NoClient, NoServer, NoMaster, NoChunk. File system layer Ivy lvy |VY‘
B First realization is Ivy.
Block-oriented storage DHash [« » DHash [« » DHash
What is DHT?
B Hash Table - data structure that maps "keys" to DHT layer Chord [« » Chord e » Chord
"values”. -
m Distributed Hash Table (DHT) - similar, but WRRCIE . Racionetsinl (i . (I

spread across many hosts.
B Interface

@ insert(key, value)

® lookup(key)

lvy details
m Data storage. File composed of 8kb data blocks.

e Content-hash data blocks -
® Public-key based blocks

B Replication

@ Every block B is stored on K immediate _ _ _
successors, better availability Basic Idea. Operation: take key as input:

route messages to node holding key

ys©2019

Operating System Concepts 125

Distributed FS: Ex.1. NFS Architecture

NFS - Network File System, first implemented on SUN Solaris.

NFS is the predominant DFS implementation on Unix System, used for accessing remote files across LANs (or WANs) with using
an unreliable datagram protocol (UDP/IP protocol and Ethernet).

This independence is achieved through the use of RPC primitives built on top of an External Data Representation (XDR) protocol
used between two implementation-independent interfaces.

Three Major Layers of NFS Architecture

1. Unix FS Interface layer based on the open, read, write, and close calls, and file descriptors.

2. VFS Layer
B VFS layer — distinguishes local and remote files.
B VFS provides a standard file system interface, hides difference between accessing local and remote file systems.
® The VFS activates file-system-specific client server
operations to local requests.
® Calls the NFS protocol procedures for remote system-calls interface
requests. l
3. NFS service layer — implements the NFS protocols. VES interface > = e
® NFS have mount mechanism services and
the actual remote-file-access services. l v ‘I,)
other types of UNIX file NFS NFS UNIX file
file systems system client server system
A
y
! RPC/XDR RPC/XDR I}

A
,
‘ network |

Operating System Concepts 12.6 ys©2019

Distributed FS: Ex.1. NFS Mount Protocol

B NFS establishes initial logical connection between server and client

B Mount operation includes local mount point, name of remote directory to be mounted and name of server machine

storing it.

B Following a mount request that conforms to its export list, the server returns a file handle—a key for further
accesses

m File handle — a file-system identifier, and an inode number to identify the mounted directory within the exported
file system

B The mount operation changes only the user’ s view and does not affect the server side
mount —t nfs Server1:/export/people /usr/students

mount -t nfs Server2:/nfs/users lusr/staff
Server 1 Client Server 2
{(root) /(root) {(root)
export L. ¥Mmunixo o usr
\ Remote / \ Femote / \
people students .~ x staff USEers
72\ HPZ7ANN
hig jon bob .. jim ann jane joe

Operating System Concepts 12.7 ys©2019

Distributed FS: Ex.1. NFS Remote Operations

RPC - remote procedure calls.
B NFS provides a set of RPC’s for remote file operations.

m NFS RPC’s operation:

B NFS servers are stateless; each request has to provide a full set e read(th, offset, count)

of arguments (NFS V4 is just coming available — very different, e write(fh, offset, count, data)
stateful) .
@ create(dirfh, name, attr)
B Modified data must be committed to the server’ s disk before e remove(dirth, name)
results are returned to the client (lose advantages of caching) sattr(fh ’
@ getattr
B NFS use to the remote-service paradigm, but use buffering and g (fh)
caching techniques for the sake of performance o setattr() attr)
B File-attribute cache — the attribute cache is updated whenever ¢ Iookup(dlr.fh, name) _
new attributes arrive from the server e rename(dirfh, name, todirth, toname)
] @ link(newdirfh, newname, dirfh, name)
Client Server e readdir(dirfh, cookie, count)
e symlink(newdirfh, newname, string)
Readin LOOKUP e readlink(fh)
) .. e mkdir(dirfh, name, attr)
fata <,,' Lookup name e rmdir(dirfh, name)
ﬁﬁniqnava «— o statfs(fh)
READ
T :. Read file data
lre « ¢

Operating System Concepts 12.8 ys©2019

END

Operating System Concepts ys©2019

