
ys©2019Operating System Concepts

LS-13:
DISTRIBUTED FILE SYSTEMS

12.2 ys©2019Operating System Concepts

Distributed (or Networked) File Systems

Distributed (Networked) File Systems
■ Allow a centralized file server to export a file-system to multiple clients.
■ Redirecting user to the right copy of data.
■ Provide file level access, and raw blocks access.
■ Clustered file-systems also exist, where multiple servers work in together.

DFS Architectures
■ as Client-Server Architecture (Centralized)

■ NFS (Network File System)
■ CIFS/SMB

(Windows Common Internet FS/Samba protocol)
■ Andrew FS

■ as Cluster-Based Arch (Less Centralized)
■ GFS (Global File System, Google FS)

■ as Symmetric Arch (Fully Distributed)
■ DHT-based (Distributed Hash Table)

■ Comparison of distributed file systems
https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems

https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems

12.3 ys©2019Operating System Concepts

Distributed FS: Client-Server
■ A Client-Server distributed file system enables clients to access files

stored on one or more remote file servers.
■ Two Models:
1. Upload/Download Model (entire files)
2. Remote Access Model (remote file operations – RPC)

NFS /2, /3, /4
■ Developed by Sun in the 1984.
■ NFS is OS-independent FS: client and server.
■ Client requests are implemented as remote procedure calls (RPCs).
■ Stateless. Means server and client can reboot without the other noticing.
■ A server, nfsd, exports filesystems as described in /etc/exports.
■ The server can be in user-space or in the kernel-space.

CIFS/SMB
■ CIFS – Windows Common Internet File System.
■ Poorly documented.
■ SMB (or Samba) reimplements it, originally reverse-engineered.

■ For speeding file access use Simple Distributing files across servers à

2. The Remote Access Model

1. The Upload/Download Model

12.4 ys©2019Operating System Concepts

Distributed FS: Cluster based

Example of GFS: Google FS
How does it work?
■ A cluster has a master node, which

ONLY keeps meta information of
files

■ A big file is splited into CHUNKS, a
CHUNK of size 64Mbs.

■ Chunks are spread on many chunk
servers

■ More details on GFS:
● Chunks are replicated for Redundancy.
● Master does not keep up-to-date of chunk locations.
● A Chunks server knows what exactly it stores.
● If client retrieval failed(low probability), ask Master again, and master update latest info from chunk servers.
● File update. Client pushes back updated file chunk to corresponding chunk server.
● Chunk server conducts the backup/replication.
● Master node is kept out of this loop, bottle neck problem is solved.
● I/O Performance of a GFS is pretty good and Scalability is good as well.

■ With very large data collections, a simple client-server approach is not going to work.
■ For speeding up file accesses, apply striping techniques by files can be fetched in parallel.

12.5 ys©2019Operating System Concepts

Distributed FS: Symmetric
Example of DHS: Ivy
■ Peer-to-Peer. Multi user Read/Write.
■ NoClient, NoServer, NoMaster, NoChunk.
■ First realization is Ivy.

What is DHT?
■ Hash Table - data structure that maps "keys" to

"values”.
■ Distributed Hash Table (DHT) - similar, but

spread across many hosts.
■ Interface

● insert(key, value)
● lookup(key)

Ivy details
■ Data storage. File composed of 8kb data blocks.

● Content-hash data blocks
● Public-key based blocks

■ Replication
● Every block B is stored on K immediate

successors, better availability Basic Idea. Operation: take key as input:
route messages to node holding key

12.6 ys©2019Operating System Concepts

Distributed FS: Ex.1. NFS Architecture
■ NFS - Network File System, first implemented on SUN Solaris.
■ NFS is the predominant DFS implementation on Unix System, used for accessing remote files across LANs (or WANs) with using

an unreliable datagram protocol (UDP/IP protocol and Ethernet).
■ This independence is achieved through the use of RPC primitives built on top of an External Data Representation (XDR) protocol

used between two implementation-independent interfaces.
Three Major Layers of NFS Architecture
1. Unix FS Interface layer based on the open, read, write, and close calls, and file descriptors.
2. VFS Layer
■ VFS layer – distinguishes local and remote files.
■ VFS provides a standard file system interface, hides difference between accessing local and remote file systems.

● The VFS activates file-system-specific
operations to local requests.

● Calls the NFS protocol procedures for remote
requests.

3. NFS service layer – implements the NFS protocols.
● NFS have mount mechanism services and

the actual remote-file-access services.

12.7 ys©2019Operating System Concepts

Distributed FS: Ex.1. NFS Mount Protocol
■ NFS establishes initial logical connection between server and client
■ Mount operation includes local mount point, name of remote directory to be mounted and name of server machine

storing it.
■ Following a mount request that conforms to its export list, the server returns a file handle—a key for further

accesses
■ File handle – a file-system identifier, and an inode number to identify the mounted directory within the exported

file system
■ The mount operation changes only the user’s view and does not affect the server side

12.8 ys©2019Operating System Concepts

Distributed FS: Ex.1. NFS Remote Operations
RPC - remote procedure calls.
■ NFS provides a set of RPC’s for remote file operations.
■ NFS servers are stateless; each request has to provide a full set

of arguments (NFS V4 is just coming available – very different,
stateful)

■ Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

■ NFS use to the remote-service paradigm, but use buffering and
caching techniques for the sake of performance

■ File-attribute cache – the attribute cache is updated whenever
new attributes arrive from the server

■ NFS RPC’s operation:
● read(fh, offset, count)
● write(fh, offset, count, data)
● create(dirfh, name, attr)
● remove(dirfh, name)
● getattr(fh)
● setattr(fh, attr)
● lookup(dirfh, name)
● rename(dirfh, name, todirfh, toname)
● link(newdirfh, newname, dirfh, name)
● readdir(dirfh, cookie, count)
● symlink(newdirfh, newname, string)
● readlink(fh)
● mkdir(dirfh, name, attr)
● rmdir(dirfh, name)
● statfs(fh)

ys©2019Operating System Concepts

END

