Operating Systems

LS-10. Process Management.

User level

Kernel level

Hardware level

\

Operating System Concepts 10.1 ys©2020

Process Management and Multithreading

Agenda

1.
2.

N O O~ W

Operating System Processes

CPU Scheduling

Process Operation on Linux

Manage a Linux running process
Introduction to Threads

Process Management Implementations
Process Synchronization &

Tasks: 135 total,
Cpu(s): 1.3%us,

Swap:

root
root
root
guruss
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

Operating System Concepts 10.2

07:56:11 up 28 min,
running, 134 sleeping,
1.0%sy,
Mem: 1026080k total,
1046524k total,

FEEEX

Applications = Processes | Performance = Networking | Users

£ Windows Task Manager
File Options VYiew ShutDown Help

Image Name User Name SessionID CPU A

CALMAIN.exe
MsPMSPSy.exe
vSmon.exe
taskmgr.exe
svchost.exe
sqlwriter .exe
nvsvc32.exe
wuaucl .exe
KHALMNPR .exe
PALMON~2,EXE
LifeDriveMgrTray....
SetPoint.exe
nost_LM.exe
Hotsync.exe
sqlservr.exe
boincmar.exe

POOCOOOOOODOOOOOOO
B88888888888R8888

1 user, load average: ©0.23, 0.71, 0.49

© stopped, © zombie
0.0%ni, 97.7%1d, ©0.0%wa, ©0.0%hi, ©0.0%si,

632596k used, 393484k free, 48376k buffers

0k used, 1046524k free, 322984k cached

0.0%st

COMMAND
Xorg
kworker /o:0
apt-get
gnome-terminal
init
kthreadd
ksoftirqd/oe
kworker /u:oe
migration/o©
cpuset
khelper
netns
sync_supers
bdi-default
kintegrityd
kblockd
ata_sff
khubd
md
kworker/oe:1
skd

nonununnununnunnnnnnnunnne
0000000000000 0WWWO|=

o o
(5] (<]
(¢ (<]
o o
(c] (<]
(<] (<]
o o
o o
(c] (<]
o o
o o
o o
o o
o o

) 0000000000000 000C0ON][
0000000000000 000OHOO0 b
Q000000000000 QCOONANDO O

0000000000000 000000

ys©2020

1. Operating System Processes

B Whatis a Process?

A program in the execution is called a Process. Process is not the same as
program. A process is more than a program code. A process is an 'active' entity as
opposed to program which is considered to be a ‘passive’ entity. Attributes held by
process include hardware state, memory, CPU etc.

B Process memory is divided into 4 sections for efficient working:

1. The text section is made up of the compiled program code, read in from non-
volatile storage when the program is launched.

2. The data section is made up the global and static variables, allocated and
initialized prior to executing the main.

3. The heap is used for the dynamic memory allocation, and is managed via calls
to new, delete, malloc, free, etc.

4. The stack is used for local variables. Space on the stack is reserved for local
variables when they are declared.

JOB SCHEDULER % PROCESS SCHEDULER

Operating System Concepts 10.3 ys©2020

1.1. Operations on Process

B A system that manages process must be able to perform
certain operations and with the process. These include 7 state
process model.

1. Create a process

Destroy (Terminate) a process

Resume a process (Restart the process)
Change the priority of a process

Block of process

Wake up a process

N o O &~ Db

Enable a process to communicate with other processes

Operating System Concepts 104 ys©2020

1.1. Operations on Process

B Process creation in OS

When a user initiates to execute a program, the operating system creates a process to represent
the execution of this program.

The creation of executable programs include many steps.

Relocatable Object

Source Module Module

The relocatable object modules are
converted into absolute programs by the
linker.

Absolute programs are converted into
executable programs by the loader, and
then the processor executes these
programs.

The program in execution is called a
process. The process consists of the
program in memory, plus the PCB(Process
Control Block) structure.

Operating System Concepts 10.5 ys©2020

1.1. Operations on Process

B Process Termination

The process terminates from the running state includes so many causes

1.

N o ok~ WD

Process execution is finished
Time slot expired

Memory boundary violation
Input/Output failure

Parent termination

Parent request

Invalid instruction

Operating System Concepts 10.6

ys©2020

1.2. Process Control Block

There is a Process Control Block for each process,
enclosing all the information about the process. It is a
data structure, which contains the following:

1. Process State - It can be running, waiting etc.
2. Process ID and parent process ID.

3. CPU registers and Program Counter. Program
Counter holds the address of the next instruction
to be executed for that process.

4. CPU Scheduling information - Such as priority
information and pointers to scheduling queues.

5. Memory Management information - Eg. page
tables or segment tables.

6. Accounting information - user and kernel CPU
time consumed, account numbers, limits, etc.

7. 1/0 Status information - Devices allocated,
open file tables, etc.

Operating System Concepts 10.7

Process State

Process |ID

Memory Limits

Open File Descriptors
Other Data...

W

ys©2020

1.3. Switching Processes

1.3.1. Concurrent Process
B Two processes are 'serial' if the execution of one must be completed before

the execution of other starts.

B If the two or more processes said to be concurrent, they are not serial, and
their execution can overlap in time.

C—
EEEr—

To

Operating System Concepts 10.8

ys©2020

1.3. Switching Processes

1.3.2. Process Context

B Minimal set of state information that must be stored to allow a process to be
stopped and re-started later

B Information stored in the CPU
@ Contents of registers
® Program Counter (PC) (aka Instruction Pointer)

B Information stored in RAM (SWAP)

1.3.3. Context and Process Switches

B Context Switch
® System switches from running a process to running kernel code
@ Computationally expensive operation

B Process Switch
® Operating system switches from one process to another

@ Requires saving the state of one process, then restoring the state of
another process

® Two context switches required — into kernel and out of kernel

Operating System Concepts 10.9 ys©2020

1.3. Switching Processes

Process Status
Process State

Main memory

Resources

Process priority
Accounting

PROCESS CONTROL BLOCK

Process identification

Process status word
Register contents

PROCESS CONTROL BLOCK

Process identification

Process Status

Process State
Process status word

Process Status
Process State

Register contents Register contents

Running

PID1

Program Counter

Process identification

Process status word

Operating System Concepts

Register Contents

Memory Limits

Open File Descriptors

OtherData...

Ready

PID 2

Memory Limits

Switch to kernel mode and
context. Save PC and CPU
reqgister contents for process
with PID 1. Change state from
Running to Ready

PROCESS CONTROL BLOCK PROCESS CONTROL BLOCK

Process identification

Process Status

Process State
Process status word
Register contents

Ready

PID 1

Memory Limits

Open File Descriptors

Other Data...

Running

PID 2

Open File Descriptors

OtherData...

Restore PC and reqgister
contents from PCB for
process with PID 2. Change
state from Ready to Running.
Switch to user mode

10.10

>

Program Counter

Register Contents

Memory Limits

Open File Descriptors

Other Data...

ys©2020

1.4. Process States

Processes can be any of the following states

Main Schedule / Dispatch

Memory
mitted
New

Memory

Completion

/O Request
/ Event wait

Interrupt
Priority / Time quantum

/O Completion
/ Event

Suspend Ready

Resume

Suspend wait

SWAP
QUEUE Process State Diagram

frishis. 3nis. 00

Operating System Concepts 10.11 ys©2020

/O Completed
but still in suspend

RAM

1.4. Process States

1. New State - A process is said to be in new state (1) when a program present in the secondary memory is
initiated for execution.

2. Ready State - A process moves from new state (1) to queue (ouepensb) of ready state (2) after it is loaded
into the main memory and is ready for execution. In ready state, the process waits for its execution by the
processor. In multiprogramming environment, many processes may be present in the ready state.

3. Run State - A process moves from ready state (2) to run state (3) after it is assigned the CPU for execution.

4. Terminate State - A process moves from run state (3) to terminate state (4) after its execution is completed.
After entering the terminate state, context of the process (process descriptor) is deleted by the operating
system.

5. Block Or Wait State - A process moves from run state (3) to block or wait state (5) if it requires an /O
operation or some blocked resource during its execution. After the I/O operation gets completed or resource
becomes available, the process moves to the ready state (2).

6. Suspend Wait State - A process moves from wait state (5) to suspend wait state (6) if a process with higher
priority has to be executed but the main memory is full.

Moving a process with lower priority from wait state to suspend wait state clear a room for higher priority
process in the ready state.

After the resource becomes available, the process is moved to the suspend ready state (7). After main
memory becomes available, the process is moved to the ready state.

7. Suspend Ready State - A process moves from ready state (2) to suspend ready state (7) if a process with
higher priority has to be executed but the main memory is full (Memory Swapping).

Moving a process with lower priority from ready state to suspend ready state clear a room for higher priority
process in the ready state.

The process remains in the suspend ready state until the main memory becomes available. When main
memory becomes available, the process is brought back to the ready state (2).

Operating System Concepts 10.12 ys©2020

1.5. Processes Queues

1.5.1. Scheduling Queues

® All processes when enters into the system are stored in the batch queue.

® Processes in the Ready state are placed in the ready queue.

® Processes waiting for a device or event to become available are placed in suspended queues.

There are unique queues for each 1/0 device or each event available.

1.5.2. System Queues and Long, Medium, Short Terms Schedulers.

Batch

Jjobs
—

Operating System Concepts

Long-term
scheduling

{

Interactive
users

Event
Occurs

Time-out

—T_F’

Ready Queue

Short-term

>

scheduling

Release

Processor

Medium-term

Ready, Suspend (

Jueue

Ly

——

*

.
-
.
A

Mc;iium-lenn

Blocked, Suspend

Queune

[

Blocked Queue

scheduling

‘.
’
r

4

Event Wait

10.13

ys©2020

1.6. Process Scheduling

B The act of determining which process in the ready state should be moved to the running state is
known as Process Scheduling.

1.6.1. Schedulers fell into one of the two general categories:

® Preemptive scheduling. When the operating system decides to favor another process,
preempting the currently executing process.
® Non preemptive scheduling. When the currently executing process gives up the CPU

voluntarily.

Scheduling Algorithms

Non-Preemptive

Preemptive
Scheduling

Scheduling

Shortest L t First C Priori
ortes onges HSESOIIE riority Shortest Job Longest Job

Remaining Remaining First Serve Based . :
Time First Time First (FCFS) scheduling s, First (LJF)

Operating System Concepts 10.14 ys©2020

1.6. Process Scheduling

1.6.2. There are three types of schedulers available:
B Long Term Scheduler (Batch Job Scheduler):
@ Long term scheduler runs less frequently.
® Long intervals (seconds to minutes)
® Selects processes to bring into ready list
O

Average rate of process creation is equal to the average departure rate of processes
from the execution memory.

B Mid-Term Scheduler (Suspend/Swap Scheduler):
® Swaps inactive processes out to disk
® Restores swapped processes from disk on demand
® Selects processes to bring into ready list
B Short Term Scheduler (CPU Scheduler):
® Runs very frequently
® Short intervals (milliseconds)
® Selects processes from ready list to run on CPU cores
@ The primary goal of this scheduler is increase process execution rate.

Operating System Concepts 10.15 ys©2020

1.6. Process Scheduling

1.6.3. Tasks of the process scheduling for different system types.

B 1. For all system types
@ Fairness - every process gets a fair share of CPU time

@ Balance - keeping all parts of the system busy (for example: keeping the processor
and |/O devices busy)

B 2. Batch processing systems
® Throughput - the number of tasks per hour

@ Turnaround time - minimizing the time spent waiting for service and processing
tasks.

B 3. Interactive systems
® Response time - quick response to requests

@ Proportionality - fulfilling the user's expectations (for example: the user is not ready
for a long system load)

B 4. Real time systems
® Deadline Completion - Prevent Loss of Data Value

@ Predictability - preventing quality degradation in multimedia systems (for example:
loss of audio quality should be less than video)

Operating System Concepts 10.16 ys©2020

2. CPU Scheduling

B The goal of CPU scheduling is to make the system efficient, fast and fair.

B CPU Scheduling Criteria to check when considering the "best" algorithm:

® 1. CPU utilization. To make out the best use of CPU and not to waste any CPU cycle, CPU
would be working most of the time (Ideally 100%). Considering a real system, CPU usage should
range from 40% (lightly loaded) to 90% (heavily loaded.)

® 2. Throughput (nponyckHaa cnocobHocTb). It is the total number of processes completed per
unit time or rather say total amount of work done in a unit of time. This may range from 10/second

to 1/hour depending on the specific processes.
® 3. Turn Around Time - total time taken to finish process execution.

® 4. Waiting Time - the sum of time process waits in ready or In/Out waiting queues to acquire get
control on the CPU.

® 5. Load average. It is the average number of processes residing in the ready queue waiting for
their turn to get into the CPU.

® 6. Response Time - process time taken when process gets CPU for the first time.
® 7. Arrival Time - when process enters Ready queue form Job Queue.

® 8. Burst Time - CPU time required by the process to complete execution.

What is Burst, Arrival, Response, Waiting, Turnaround times and Throughput? Read on After
Academy:

https://afteracademy.com/blog/what-is-burst-arrival-exit-response-waiting-turnaround-time-and-throughput

Operating System Concepts 10.17 ys©2020

https://afteracademy.com/blog/what-is-burst-arrival-exit-response-waiting-turnaround-time-and-throughput

2. CPU Scheduling

B Major CPU Scheduling Algorithms:
® 1. First Come First Serve (FCFS) Scheduling (non preemptive)
2. Shortest Job First (SJF) Scheduling (non preemptive)

o
® 3. Priority Scheduling (non preemptive)

® 4. Shortest Remaining Time First (SRTF) Scheduling (preemptive)
® 5. Round Robin (RR) Scheduling (preemptive) .

® 6. Multilevel Queue Scheduling (mixing) Distributed System

Parallel System

Time Sharing

Multiprogramming

Batch Processing

Serial Processing

Operating System Concepts 10.18 ys©2020

2.1. First Come First Serve (FCFS) Scheduling

B Jobs are executed on FCFS basis. PROCESS BURST TIME
B Easy to understand and implement.
B Poor performance because Twait is high. o h
B Burst Time refers to the time required in P2 3

milliseconds by a process for its - 6

Execution (CPU time of a process).
B Processes table and Gantt chart - b 2

P1 P2 P3 P4
0 21 24 xR -

Twaiting=Tstarting - Tarrival (P1=0, P2=21-0, P3=24-0, P4=30-0)
TwaitingAvg=TwaitingAllProcess/Nprocess=(0+21+24+30)/4= 18.75 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitinOutQueue
TturnaroundTotal=(0+21+0)+(21+3+0)+(24+6+0)+(30+2+0)= 107 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=107/4= 26.75 ms

Throughput=(21+3+6+2)/4= 8 ms (one process executes every 8 ms)

Operating System Concepts 10.19

ys©2020

2.2. Shortest Job First (SJF) Scheduling

B In SJF shortest process is executed first. PROCESS BURST TIME
B Best algorithm to minimize waiting time.
B Processes of the same length run in i ik
FCFS mode. P2 3
B Difficult to implement since the system - 6
does not know the Burst time of the
process. P4 2
B Processes table and Gantt chart 2
P4 | P2 P3 P1
| B 5 11

Twaiting=Tstarting - Tarrival (P4=0, P2=2-0, P3=5-0, P1=11-0)

TwaitingAvg=TwaitingAllProcess/Nprocess=(0+2+5+11)/4= 4.5 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitinOutQueue
TturnaroundTotal=(0+2+0)+(2+3+0)+(5+6+0)+(11+21+0)= 50 ms

TturnaroudAvg=TturnaroundTotal/Nprocess=50/4= 12.5 ms

Throughput=(2+3+6+21)/4= 8 ms (one process executes every 8 ms)

Operating System Concepts 10.20

ys©2020

32

2.3. Priority Scheduling (non-preemptive)

M Priority is assigned for each process.
B Process with highest priority is executed first and so on.
B Processes with same priority are executed in FCFS mode.
B Priority can be decided based on:
. PROCESS BURST TIME PRIORITY
® memory requirements,
: : P1 21 2

® time requirements,

® any other resource requirement. P2 3 :
B Disadvantage P3 6 E
The major problem with priority scheduling is starvation P4 2 3
(ronopmaHune npouecca), because low priority jobs are
waiting for the CPU for a long time.
M Processes table and Gantt chart > P2 P P4 -

TwaitingAvg=(0+3+24+26)/4= 13.25 ms { g e —

Tturnaround=TwaitReadyQueue+Texecution+TwaitinOutQueue
TturnaroundTotal=(0+2+0)+(3+21+0)+(24+2+0)+(26+6+0)= 84 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=84/4= 21 ms

Thr hput=(3+21+2+6)/4= 8 ms (one process executes every 8 ms
Opera%}ljggSyggrE chr:?c-el-pts ¥ +6) 8 (p 10.21 y) ys©2020

2.4. Shortest Remaining Time First (SRTF)Scheduling

B In SRTF, jobs are put into ready

queue as they arrive. PROCESS BURST TIME ARRIVAL TIME
B If there is a process with a short P1 21 .
burst time, the existing process is oo ; 1
preempted (BbITECHAETCA).
B Processes of the same length run & 5 2
in FCFS mode. P4 2 3

B TwaitAvg for SRTF is less than
both, SJF and FCFS.

B Processestable & Ganttchart> | P' | P2 | P4 | F2 P3

P1

0 1 3 S 6 12

Twaiting=Tstarting - Tarrival (P1=12-1, P2=5-3, P3=6-2, P4=3-3)
TwaitingAvg=TwaitingAllProcess/Nprocess=(11+2+4+0)/4= 4.25 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitinOutQueue
TturnaroundTotal=(11+21+0)+(2+3+0)+(4+6+0)+(0+2+0)= 49 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=49/4= 12.25 ms

Throughput=(1+2+2+1+6+20)/4= 8 ms (one process executes every 8 ms)

Operating System Concepts 10.22

32

ys©2020

2.5. Round Robin (RR) Scheduling (preemptive)

A fixed time is allotted to each process, called quantum, for execution.

B Once a process is executed for given time period that process is preempted and other
process executes for given time period.

B Processes of the same length run in FCFS mode.

B Context switching is used to save PROCESS BURST TIME
states of preempted processes. - o
B Processes table and Gantt chart > = ;
B Example for Time Quantum =5 ms
P3 6
Twaiting=SUMquant(Tstarting - Tarrival)
P1=0-0+15-5+21-20+26-26+31-31 ! 2
P2=5-0
P3=8-0+20-13
P4=13-0 P1 P2 P3 P4 P1 P3 P1 P1 P1
TwaitingAvg=(11+5+20+13)/4= 11 ms
S 8 13 15 20 21 26 31 32

Tturnaround=TwaitReadyQueue+Texecution+TwaitinOutQueue
TturnaroundTotal=(16+21+0)+(5+3+0)+(15+6+0)+(13+2+0)= 81 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=81/4= 20.25 ms

Throughput=(5+3+5+2+5+1+5+5+1)/4= 8 ms (one process executes every 8 ms)
Operating System Concepts 10.23 ys©2020

2.6. Multilevel & Multilevel Feedback Queue Scheduling

B Multilevel Queue Scheduling

Multilevel Queue Scheduling combine a advantages of many algorithms.
Multiple Ready queues are maintained for processes.

Each queue can have its own scheduling algorithms.

Priorities are assigned to each queue (multi-priority).

B Multilevel Feedback Queue Scheduling

® The algorithm who maximizes the CPU utilization and throughput, and minimizes the turnaround time, waiting time
and response time, are the best of all.

® Scheduling algorithm can allows a process to move between the queues, if process wait long time
® Variable time quantum’s can used for every process.

B Multiple Queues usage and queuing diagram of Process Scheduling

Highest Priority
FCFS System Process —> .| ready queue ,@_—'
SJF IO queue < I/O request
Foreground Process
time slice

expired

RR ’ Background Process child fork a i
executes child

A

Lowest Priority
Operating System Concepts 10.24 ys©2020

2.7. CPU Scheduling Conclusion

B We should choose our algorithm such that no processes starve for the resource and
minimize the average waiting time, average response time and average turnaround time.

FCFS may cause long waiting time.

SJF and SRTF may cause process starvation (ronogaHwe).

Round Robin scheduling algorithm will behave as FCFS if time quantum is large.
Multilevel Queue Scheduling combine a advantages of many algorithms.

Multilevel Feedback Queue Scheduling algorithms is a best scheduling algorithm.

Operating System Concepts 10.25 ys©2020

2.8. Scheduling Problems Examples

Process | Burst Time(ms)
B Tasks 2.7.1. FCFS 5 -
® TwaitAvg= 25 ms P2 24 P1 P2 Ps Pa Ps
P3 16 0 5 29 45 55 58
® TthurnaroundAvg= 38.4 ms Py 10
® Throughput=11.6 ms Ps 3
Process | Burst Time(ms)
B Task2.7.2. SJF 3 5
P P P P P
® TwaitAvg= 12.6 ms P2 24 3 ! 4 3 2
P3 16 0 3 8 18 34 58
® TthurnaroundAvg= 24.2 ms P 10
4
® Throughput=11.6 ms Ps 3
Process Burst Arrival
. TaSk 2-7-3. SRTF Time(CPU) | Time(ms) P1 P2 Ps Ps P2 Pa
e TwaitAvg= 3.2 ms Py 3 0 0 3 4 8 10 15 20
P2 6 2
® TthurnaroundAvg= 7.2 ms Ps 4 4
® Throughput= 4 ms Ps 5 6
Ps 2 8
. . Process | CPU Burst | Priority
B Task 2.7.4. Priority _ Time : Gantt Chart
1
® TwaitAvg= 10 ms P, 12 4 Pa P1 Ps P Ps
® TthurnaroundAvg= 15.2 ms E3 i o 3 9 13 25 26
4
® Throughput= 5.2 ms Ps 3
[| TaSk 275 RR Process | CPU Burst Gantt Chart
o TwaitAvg= 15 ms p o PrPafPePrfPe P PP Pu] P
- 1
P3 8
® Throughput= 14.66 ms
Operating System Cogcfpts 10.26 ys©2020

3. Process Operations on Linux

3.1. Process Creation.

B Through appropriate system calls, such as fork or spawn, processes may create
other processes. The process which creates other process, is termed the parent
of the other process, while the created sub-process is termed its child.

Each process is given an integer identifier, termed as process identifier, or PID.
The parent PID (PPID) is also stored for each process. ®

B On atypical UNIX systems
the process scheduler is jogin o Sshd
termed as sched, and is
given PID 0.

B The first thing done by it at

: : bash sshd
system start-up time is to pid = 3610

launch init, which gives
that process PID 1.

. tcsch
B Process is created @

via fork() or exec().

A Tree of processes on a typical Linux system

Operating System Concepts 10.27 ys©2020

3. Process Operations on Linux

B Further Init launches all the system daemons and user logins, and becomes the
ultimate parent of all other processes.

B A child process may receive some amount of shared resources with its parent
depending on system implementation. To prevent runaway children from
consuming all of a certain system resource, child processes may or may not be
limited to a subset of the resources originally allocated to the parent.

B There are two options for the parent process after creating the child:

@ Wait for the child process to terminate before proceeding. Parent process
makes a wait() system call, for either a specific child process or for any
particular child process, which causes the parent process to block until the
wait() returns. UNIX shells normally wait for their children to complete before
issuing a new prompt.

® Run concurrently with the child, continuing to process without waiting. When
a UNIX shell runs a process as a background task, this is the operation
seen. It is also possible for the parent to run for a while, and then wait for
the child later, which might occur in a sort of a parallel processing operation.

Operating System Concepts 10.28 ys©2020

3. Process Operations on Linux

3.2. Process Termination

B By making the exit(system call), typically returning an int, processes may request their
own termination. This int is passed along to the parent if it is doing a wait(), and is typically
zero on successful completion and some non-zero code in the event of any problem.

B Processes may also be terminated by the system for a variety of reasons, including:
@ The inability of the system to deliver the necessary system resources.
® Inresponse to a KILL command or other unhandled process interrupts.

® A parent may Kill its children if the task assigned to them is no longer needed i.e. if the
need of having a child terminates.

e If the parent exits, the system may or may not allow the child to continue without a
parent (In UNIX systems, orphaned processes are generally inherited by init, which
then proceeds to kill them.)

B When a process ends, all of its system resources are freed up, open files flushed and
closed, etc. The process termination status and execution times are returned to the parent
if the parent is waiting for the child to terminate, or eventually returned to init if the process
already became an orphan.

B The processes which are trying to terminate but cannot do so because their parent is not
waiting for them are termed zombies. These are eventually inherited by init as orphans

Opaggg !/lsltgnq Cgrf([épts 10.29 ys©2020

3. Process Operations on Linux

3.3. Process related system calls (in Unix)
M fork() creates a new child process
® All processes are created by forking from a parent.
® The init process is ancestor of all processes.
® After fork, parent and child are running same code
exec() used after fork() to replace the process memory space with a new program code
exit() terminates a process (parent clean child resources)

wait() causes a parent to block until child terminates
Many variants exist of the above system calls with different arguments

S
parent / \ resumes
wait >

\

fork())

exit()

Operating System Concepts 10.30 ys©2020

4. Manage a Linux running process

B 4.1. Start, stop Jobs and Processes

S cat file #foreground process=job
$ cat file | wc -1 #foreground job=two processes
S cat file | wc -1 & #background job=two processes
[1] 2543 #job ID and last process ID
S ping abc.lv #foreground process=job
S Ctrl+c #SIGTERM to current process
$ yes > /dev/null & Moving a Processs
[2] 2556
5 Jobs -1 #jobs listing fg Background Foreground
[1]+ Done ls -1 | wec -1 o
[2]+ Running yes > /dev/null & Syl o
b
B 4.2 fg, bg g

_ Syntax: bg job_ID
To bring a background process to the foreground Background _Foreground

$ fg OR fg %2 4#move to foreground

To move a foreground process in the background: ctiz JobID
1. Stop the process by typing Ctrl+z.

2. Move the stopped process to the background by typing bg.

S Ctrl+z #SIGHUP to current process

#move to backgrog&g

OperatingSystem Concepts ys©2020

4. Manage a Linux running process
B 4.3. nohup

A process may not continue to run when you log out or close your terminal. This special case can be avoided by preceding
the command you want to run with the nohup command. Also, appending an ampersand (&) will send the process to the
background and allow you to continue using the terminal. Nohup does is return the running process's PID. Result write or to
redirect file > res-file, or to ./nohup.out, or to ~/nohup.out

S nohup ping abc.lv > res-file & fkeeping a process running

2654

B 4.4. screen (modern nohup analog)

Screen is a terminal multiplexer program that allows you to start a screen session and open any number of windows (virtual
terminals) inside that session. Processes running in Screen will continue to run when their window is not visible even if you
get disconnected. < . S 1 .

$ screen #Starting Unnamed Session - Lo | | Size |Modify ti
$ Ctrl+a °? #Screen help .bashrc.d g .bashrc.d
.cache 3 .cache
$ Ctrl+a d #Detach from screen session -cont'g : -cont'g
$ screen -S name #Starting Named Session TR oG : SEEcEAleNd
$ screen -1s #Session listing
$ screen -r PID #Reattach to a Screen PID
7918M/17G (46%) 7918M/17G (46%)
$ C t r l + a ¢ # C rea t e new t e rmi na l i ns t ance Co;em : BZI CMOXeTe BUIETH CKPHTHE O(alie .*, yCTAaHOBMB ONUMIO B MeHI0 KoHbuIrypaums.
ys@srv ~
S Ctrl+a n #Next Screen
$ Ctrl+a p #Previous Screen
$ Ctrl+a S #Split current region horiz ‘
screen - screen manager with
$ Ctrl+a | #Split current region vertic VT100/ANST terminal emulation
$ Ctrl+a tab #Switch input to next region ZEELS
screen [-options] [cmd [args]

screen -r [[pid.]tty[.host]] testmail.php
screen -r ses-
sionowner/ [[pid.]tty[.host]]

IDESCRIPTION zulu_manual bkp 20180604_23-31.sql.gz
Screen 1is a full-screen window man- S
ager that multiplexes a physical
terminal between several processes
n(l) line 1 (press h for help or g to quit)
2 bash 1 bash

Operating System Concepts 10.32 ys©2020

4. Manage a Linux running process

B 4.5 ps

The default output of ps is a simple list of the processes running in your current terminal. As you can see
below, the first column contains the PID.

(_e) ’

00:
00:
00:

full listing

TIME

00:
00:
00:

00:
00:
00:
00:
00:

00:
00:

19
00
00

00:
00:
00:
00:
00:

00:
00:

CMD

(_

f)

/sbin/init

[kthreadd]
[rcu_gp]

00
00
00
00
00

00
00

sshd: ys

[kworker/0:1]

sshd: ys@pts/0

-bash
sshd:

sshd:

pPs

-ef

$ ps

PID TTY TIME CMD
23058 pts/0 00:00:00 bash
23069 pts/0 00:00:00 ps

ps to show me every running process (-e) and a full listing (-f)
$ ps -ef #every running process
UID PID PPID C STIME TTY
root 1 0 O Novle ?
root 2 0 O Novle ?
root 3 2 0 Novle ?
root 23039 576 0 14:18 2
root 23045 2 0 14:18 2

Ve 23057 23039 0 14:18 2

Ve 23058 23057 0 14:18 pts/0
root 23170 576 0 14:22 2
sshd 23193 23191 14:22 2

Ve 23209 23058 14:23 pts/0
B 4.6. pstree

Operating System Concepts

unknown

unknown

mc——>bash—-7pstree
yes

10.33

[priv]

[priv]

[net]

ys©2020

4. Manage a Linux running process

m 4.7. top - viewing details of running processes and quickly identifying problem (memory and other).

$ top
top - 14:30:47 up 1 day,
Tasks: 136 total,
sCpu(s) : 0,3 us,
MiB Mem 482,14
MiB Swap: 512,0
PID USER PR
808 mysqgl 20
23057 ys 20
1 root 20
2 root 20
3 root 0
4 root 0
6 root 0
8 root 0
9 root 20
10 root 20

Understanding top’s interface:
. Sort-View - press KEY: M- by memory%, P by cpu%, N by PID, T by Time; H by threads statistic (default tasks statistic), R - ascending order, v -forest

a A W NN = O

1 running,

0,0 sy, 0,0 ni,
total,
total,
NI VIRT
0 1274152
0 16192
0 104048
0 0
-20 0
-20 0
-20 0
-20 0
0 0
0 0

11:42,

1l user,

RES
65160
5024
7228
0

O OO OO O

135 sleeping,
99,7 id,
11,3 free,
501,4 free,

0. modificators -H, -c, -u
load average: 0,08, 0,08, 0,03 1
0 stopped, 0 zombie 2.
0,0 wa, 0,0 hi, 0,0 si, 0,0 st 3.
215,4 used, 255,7 buff/cache 4
10, 6 used. 246,3 avail Mem 5
SHR S $CPU SMEM TIME+ COMMAND 6
5176 S 0,3 13,2 0:34.55 mysqgld
3972 s 0,3 1,0 0:00.13 sshd
4928 S 0,0 1,5 0:19.19 systemd
0 s 0,0 0,0 0:00.00 kthreadd
01 0,0 0,0 0:00.00 rcu gp
01T 0,0 0,0 0:00.00 rcu par gp
01 0,0 0,0 0:00.00 kworker/0:0H-kblockd
01T 0,0 0,0 0:00.00 mm percpu wq
0 s 0,0 0,0 0:07.48 ksoftirqgd/0
0 I 0,0 0,0 0:12.37 rcu_sched

. Process Statistic: Running Processes & Processes State

~

~

. Memory usage — total, free, for processes used RAM, for disk buff/cache used RAM

. SysStatistic: Sys time, Uptime, User sessions, Load Average of CPU over 1, 5, 15 min — number of running processes, example, 0.4 = 40%/coreNr.

. CPU usage in %: user, system, manual changed nice, idle, In/Out wait, hardware $ system interrupt event wait, VM steal time on Virtual Environment

. SWAP usage — total, free, for processes used SWAP and for processes available RAM (without swap, but include cache usage)

6. Task Area: PID, EUID, PRiority, Nice, VIRT - all memory, RES — RAM, SHR — share memory with other processes, State, %CPU, %MEM, live TIME

6a. Processes States:
(R) Runnable: A process in this state is either executing on the CPU, or it is present on the Run Queue, ready to be executed.
(S) Interruptible Sleep: Processes in this state are waiting for an event to complete (Event Queue).

(D) Uninterruptible Sleep: In this case, a process is waiting for an 1/0 operation to complete (In/Out Queue).

(T) Stopped: These processes have been stopped by a job control signal (such as by pressing Ctrl+2).

(Z) Zombie: Terminated processes whose data structures are still around and parent is not around are called zombies.

Operating System Concepts

10.34

ys©2020

4. Manage a Linux running process

B 4.8 Kkill

Kill is used to send a signal to a process. The most commonly used signal is "terminate”
(SIGTERM) or "kill" (SIGKILL). However, there are many more. Below are some examples.
The full list can be shown with kill -L.

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSRI1
11) SIGSEGV 12) SIGUSRZ 13) SIGPIPE 14) SIGALRM 15) SIGTERM

The default signal is 15, which is SIGTERM
$ kill 20896

Notice signal number nine is SIGKILL. Usually, we issue a command such as
$ kill -9 20896

$ kill -15 20226 1823 26785

$ kill -s KILL 3245

Keep in mind that many applications have their own method for stopping.

B 4.9. nise, renice

$ nice -11 yes>/dev/nullé& #set the priority of a command yes

S renice 5 20901 #changing priority of the proc. 20901
$ top —-u student #check the nice value of a process

nice --10 command #set the negative priority for a cmnd.
renice -n 15 -p 235 #changing priority of the proc. 235

Operating System Concepts 10.35 ys©2020

5. Introduction to Threads

B Thread is an execution unit which consists of its own program counter, a stack, and a set
of registers. Threads are also known as Lightweight processes.

B Threads are popular way to improve application through parallelism. The CPU switches
rapidly back and forth among the threads giving illusion that the threads are running in

single-threaded process

Operating System Concepts

multithreaded process

parallel.
registers
code data files code data files
register stack reg... reg... reg...
stack stack stack
}— thread
- thread

ys©2020

5. Introduction to Threads

B 5.1. Thread Life Cycle in OS

Born

<

Ready

Running

A 4

Waiting Sleeping Blocked

Operating System Concepts 10.37 ys©2020

5. Introduction to Threads

B 5.2. Multithreading in OS

Multithreading in an operating system divided into four categories:

1. One-To-One Model. One Process, One Thread: In this traditional approach, the process
maintains only one thread. For example, the MS-DOS operating system supports this approach.

2. Many-To-One Model. Multi Processes, One Thread: Operating system supports multiple user
processes but only support one thread process. For example UNIX.

3. One-To-Many Model. One Process, Multi Threads: In this approach, a process divided into the
number of threads. For example, Java Runtime Environment.

4. Many-To-Many Model. Multi Processes, Multi Threads: In this approach, a process divided into
the number of threads. For example Window 2000, Solaris, LINUX.

Thread Thread
2" stack 3rd stack

Process

Kernel

Operating System Concepts 10.38 ys©2020

5. Introduction to Threads

B 5.3. Types of Thread

User threads, are above the kernel and without kernel support. These are the
threads that application programmers use in their programs.

Kernel threads are supported within the kernel of the OS itself. All modern OSs
support kernel level threads, allowing the kernel to perform multiple simultaneous
tasks and/or to service multiple kernel system calls simultaneously.

B 5.4. Multithreading Models

The user threads must be mapped to kernel threads, by following strategies:
® Many-To-One Model
® One-To-One Model T T T T ﬁ
@ Many-To-Many Model

user thread

B 5.4.1. Many-To-One Model

@ In the many-to-one model, many user-level threads
are all mapped onto a single kernel thread.

® Thread management is handled by the thread library
in user space, which is efficient in nature. K le— kemelthread

Operating System Concepts 10.39 ys©2020

5. Introduction to Threads

| 542 One-TO-One Model user thread j

® The one-to-one model creates a separate kernel T
thread to handle each and every user thread.

® Most implementations of this model place a limit
on how many threads can be created.

® Linux and Windows from 95 to XP implement the
one-to-one model for threads.

T T

K
B 5.4.3. Many-To-Many Model J

kernel thread

® The many-to-many model multiplexes any number
of user threads onto an equal or smaller number of T T
kernel threads, combining the best features of the

-
one-to-one and many-to-one models. L
® Users can create any number of the threads. -

thread
® Blocking the kernel system calls does not block the
entire process.

® Processes can be split across multiple processors.
K K K

L kernel thread

Operating System Concepts 10.40 ys©2020

5. Introduction to Threads

5.5. Difference Between Process and Thread in OS

® A process cannot share the same memory space whereas; threads can share memory and files.
e It takes more time to create a process whereas; it takes less time to create a thread.

@ The process takes more time to complete the execution and termination whereas; thread takes
less time to terminate.

® Process execution is slow, but threads execute very fast.

e Context switching time between two processes is much whereas; context switching time between
two threads is less as compared to the process.

e Implementing the communication between two processes is more difficult, but communication
between the two threads is easy to implement because threads share the memory.

e System calls are required to communicate with each process, but in the case of a thread, system
calls not necessary.

@ The loosely coupled process, but tightly coupled threads.

® The process requires more resources to execute whereas; the thread requires fewer resources to
execute. Therefore, the thread is called a lightweight process.

® A process is not suitable for parallel activity-based whereas threads are suitable for the parallel
activity.

Operating System Concepts 10.41 ys©2020

5. Introduction to Threads

B 5.6. Processes and Threads in Windows (Process Explorer)

®3 Process Explorer - Sysinternals: www.sysinternals.com [ADMIN-PClys] (Administrator) 6 chrome.exe:53904 Properties - O

File Options View Process Find Users Help Image Performance Performance Graph Disk and Metwork
d & =208 & R A | | ! ! l { | | | | | ’ GPUGraph Threads TCP/IP Securty Environment Job Strings
Process CPU Private Bytes WorkingSet PID Description Company Name Count: 14
¢ chrome.exe < 0.0 35552K 59292K 11760 Google Chrome Google LLC TID EPU Cycles Delta Suspend Count Start Address
¢ chrome.exe <0Mm 33828K 61 364K 5480 Google Chrome Google LLC
G chiome.exe <00 565 344 K 92580K 5100 Google Chrome Google LLC 1;3;2 L T mzx‘jﬁg‘:
¢ chrome.exe <0.01 31284K 56 920K 12092 Google Chrome Google LLC 12292 chiom e' dIIiCr 5 s'"
€ chiome.exe 0.01 52684 K 95940K 1484 Google Chrome Google LLC 6916 chrome.dilCras. .
¢ chrome.exe <0Mm B9640K 106 956 K 5912 Google Chrome Google LLC 2404 chrome.dllCras. .
¢ chrome.exe 17 868K 37 940K 10884 Google Chrome Google LLC 12308 ntdll.dilLdrdce...
[cllchrome. exe 0.m 43 240K 73104 K 5904 Google Chrome Google LLC 12328 chrome.dllCras...
¢ chrome.exe <0Mm 55028 K 90156 K 7260 Google Chrome Google LLC 12324 chrome.dllCras...
¢ chrome.exe <0Mm 61 916K 97 732K 3052 Google Chrome Google LLC 12312 chrome.dlllCras...
¢ chiome.exe 12576 K 22352K 7684 Google Chrome Google LLC 12320 chrome.dll!Cras...
[csrss.exe <0.01 1880K 2344K 620 Client Server Runtime Process Microsoft Corporation 12332 chrome.dllCras...
[®] csrss.exe 0.0 2304 K 3332K 8332 Client Server Runtime Process Microsoft Corporation 12336 chrome.dllCras...
[a5] csrss.exe <00 1668K 4980K 13496 Client Server Runtime Process Microsoft Corporation 12760 chrome.dllCras...
PP climon.exe 4540K 16692K 14544 CTF Loader Microsoft Corporation 1200 Ghiome. cHCras...
[#7) dasHost.exe 6864 K 12796 K 3296 Device Association Framewo... Microsoft Corporation
[} dlhost.exe $3 Process Explorer - S'--'sir%te.mals: 'u\-ww.5'-<'si;1terna|s'cor:1 .ﬂ.Elr\.-'1I-I\J-F'IC“' \dministrator)
[#=] dwm.exe . P & v [° b
[#=] dwm.exe File Options View Process Find Users Help - —
B ST ;e d @B BEBHE Window { } ! } ll. L, | | ‘ L hread' ID: 4940 Stack Module
(= fontdwhost.exe Process Set Affinity.. wkingSet PID Description Company Name tart Time: 16:45:05 17.11.2020
[fonkdkvhostiess m o : e Wait:UserRequest Base Priority: 4
fontdrvhost. exe — Set: Priority > Realtime: 24
IS ¥ " System |dle Proces i I
= o oy " ernel Time: 0:00:00,078 Dynamic Priority: 4
¥ Interrupts = 7 System Ki High: 13
o ill Process Del . _—
E]_ 7 Interupts il p . ShifeDel Above Normal: 10 ser Time: 0:00:01.046 1/O Priority: Mormal
[z]LogonUl.exe (8] smss.exe frrocess e e h fon ontext Switches: 3 634 Memory Priotity: 5
(55 lsass.exe [#] csrss.exe Restart b lion
=) o [wininiexe - B e on ycles: 4059011 546 Ideal Processor: 2
- (= [#5] services.exe b - iion ; . -
1.5 MicrosoftE dgelpdate. exe [Svehosere Create Dump S Background: 4 (Low |/0 and Memory Priority) o Permissions kil Suspend
5 msiexec. exe (=[5 svchost exe Idle: 4 iion ’
[#Z|MsMpEng.exe Check VirusTotal o
B) OK Cancel
CPU Usage: 1.36% Commit Properties... L
Search Online... Ctrl+M
T T3omk
Operating System Concepts ys©2020

6. Process Management Implementations

B 6.1. OS NetWare 4.x ‘
non-preemptive algorithm) B St e R,

@‘ o 7 O no

oL
/. L3y
ool

) il) o
5 d

//

A b e e sex
e

/

Operating System Concepts 10.43 ys©2020

6. Process Management Implementations

Hm 6.2 0S-9
mix algorithm

I
sG>

CAafipren

Operating System Concepts 10.44 ys©2020

6. Process Management Implementations

B 6.3.0S/2
mix algorithm

:%?é‘egﬂmdl)

o
) Sevthiisee. 3 :)‘\{_ JI ¢

Aponees i Cuecrenicos o

wpacce
Wﬂ’ﬂUﬂ@fﬂm&\ C,’L(/‘:G{Lé'r
'
,
AJ
“0 teDearecer”

Wﬁ/f" e 2

Operating System Concepts 10.45 ys©2020

6. Process Management Implementations

B 6.4. Linux
mix algorithm

celzecs

84Ol
+ npTorart G4

Licon Lomiefireitsriet
e

Operating System Concepts 10.46 ys©2020

6. Process Management Implementations

B 6.5. Windows
mix algorithm

Lleyzet. D lenace 4./,'{(
e
oie. Bleprpie kkne

Operating System Concepts 10.47 ys©2020

/. Inter-process Communication

B Two fundamental models:

Message Passing Shared Memory
process A M process A
1
shared
2
process B M process B

Operating System Concepts 10.48 ys©2020

The End

Operating System Concepts 10.49 ys©2020

