
10.1 ys©2020Operating System Concepts

Operating Systems
LS-10. Process Management.

10.2 ys©2020Operating System Concepts

Process Management and Multithreading

Agenda
! 1. Operating System Processes
! 2. CPU Scheduling
! 3. Process Operation on Linux
! 4. Manage a Linux running process
! 5. Introduction to Threads
! 6. Process Management Implementations
! 7. Process Synchronization
! 8. Deadlocks

10.3 ys©2020Operating System Concepts

1. Operating System Processes
! What is a Process?
A program in the execution is called a Process. Process is not the same as
program. A process is more than a program code. A process is an 'active' entity as
opposed to program which is considered to be a 'passive' entity. Attributes held by
process include hardware state, memory, CPU etc.
! Process memory is divided into 4 sections for efficient working:
1. The text section is made up of the compiled program code, read in from non-

volatile storage when the program is launched.
2. The data section is made up the global and static variables, allocated and

initialized prior to executing the main.
3. The heap is used for the dynamic memory allocation, and is managed via calls

to new, delete, malloc, free, etc.
4. The stack is used for local variables. Space on the stack is reserved for local

variables when they are declared.

10.4 ys©2020Operating System Concepts

1.1. Operations on Process
! A system that manages process must be able to perform

certain operations and with the process. These include 7 state
process model.

1. Create a process
2. Destroy (Terminate) a process
3. Resume a process (Restart the process)
4. Change the priority of a process
5. Block of process
6. Wake up a process
7. Enable a process to communicate with other processes

10.5 ys©2020Operating System Concepts

1.1. Operations on Process
! Process creation in OS
When a user initiates to execute a program, the operating system creates a process to represent
the execution of this program.
The creation of executable programs include many steps.

The relocatable object modules are
converted into absolute programs by the
linker.
Absolute programs are converted into
executable programs by the loader, and
then the processor executes these
programs.
The program in execution is called a
process. The process consists of the
program in memory, plus the PCB(Process
Control Block) structure.

10.6 ys©2020Operating System Concepts

1.1. Operations on Process
! Process Termination
The process terminates from the running state includes so many causes
1. Process execution is finished
2. Time slot expired
3. Memory boundary violation
4. Input/Output failure
5. Parent termination
6. Parent request
7. Invalid instruction

10.7 ys©2020Operating System Concepts

1.2. Process Control Block
There is a Process Control Block for each process,
enclosing all the information about the process. It is a
data structure, which contains the following:
! 1. Process State - It can be running, waiting etc.
! 2. Process ID and parent process ID.
! 3. CPU registers and Program Counter. Program

Counter holds the address of the next instruction
to be executed for that process.

! 4. CPU Scheduling information - Such as priority
information and pointers to scheduling queues.

! 5. Memory Management information - Eg. page
tables or segment tables.

! 6. Accounting information - user and kernel CPU
time consumed, account numbers, limits, etc.

! 7. I/O Status information - Devices allocated,
open file tables, etc.

Program Counter and
Register Contents - used
for saving process CPU
state when switching
processes.

10.8 ys©2020Operating System Concepts

1.3. Switching Processes
1.3.1. Concurrent Process
! Two processes are 'serial' if the execution of one must be completed before

the execution of other starts.

! If the two or more processes said to be concurrent, they are not serial, and
their execution can overlap in time.

10.9 ys©2020Operating System Concepts

1.3. Switching Processes
1.3.2. Process Context
! Minimal set of state information that must be stored to allow a process to be

stopped and re-started later
! Information stored in the CPU

" Contents of registers
" Program Counter (PC) (aka Instruction Pointer)

! Information stored in RAM (SWAP)

1.3.3. Context and Process Switches
! Context Switch

" System switches from running a process to running kernel code
" Computationally expensive operation

! Process Switch
" Operating system switches from one process to another
" Requires saving the state of one process, then restoring the state of

another process
" Two context switches required – into kernel and out of kernel

10.10 ys©2020Operating System Concepts

1.3. Switching Processes

10.11 ys©2020Operating System Concepts

1.4. Process States
Processes can be any of the following states

* In this model, a lot of the

RAM
SWAP

6

1 2 3 4

57

Main
Memory

Admitted

Interrupt

/ Event wait
/ Event

/ Exit

Secondary
Memory

10.12 ys©2020Operating System Concepts

1.4. Process States
! 1. New State - A process is said to be in new state (1) when a program present in the secondary memory is

initiated for execution.
! 2. Ready State - A process moves from new state (1) to queue (очередь) of ready state (2) after it is loaded

into the main memory and is ready for execution. In ready state, the process waits for its execution by the
processor. In multiprogramming environment, many processes may be present in the ready state.

! 3. Run State - A process moves from ready state (2) to run state (3) after it is assigned the CPU for execution.
! 4. Terminate State - A process moves from run state (3) to terminate state (4) after its execution is completed.

After entering the terminate state, context of the process (process descriptor) is deleted by the operating
system.

! 5. Block Or Wait State - A process moves from run state (3) to block or wait state (5) if it requires an I/O
operation or some blocked resource during its execution. After the I/O operation gets completed or resource
becomes available, the process moves to the ready state (2).

! 6. Suspend Wait State - A process moves from wait state (5) to suspend wait state (6) if a process with higher
priority has to be executed but the main memory is full.
Moving a process with lower priority from wait state to suspend wait state clear a room for higher priority
process in the ready state.
After the resource becomes available, the process is moved to the suspend ready state (7). After main
memory becomes available, the process is moved to the ready state.

! 7. Suspend Ready State - A process moves from ready state (2) to suspend ready state (7) if a process with
higher priority has to be executed but the main memory is full (Memory Swapping).
Moving a process with lower priority from ready state to suspend ready state clear a room for higher priority
process in the ready state.
The process remains in the suspend ready state until the main memory becomes available. When main
memory becomes available, the process is brought back to the ready state (2).

10.13 ys©2020Operating System Concepts

1.5. Processes Queues
1.5.1. Scheduling Queues

" All processes when enters into the system are stored in the batch queue.
" Processes in the Ready state are placed in the ready queue.
" Processes waiting for a device or event to become available are placed in suspended queues.

There are unique queues for each I/O device or each event available.

1.5.2. System Queues and Long, Medium, Short Terms Schedulers.

10.14 ys©2020Operating System Concepts

1.6. Process Scheduling
! The act of determining which process in the ready state should be moved to the running state is

known as Process Scheduling.

1.6.1. Schedulers fell into one of the two general categories:
" Preemptive scheduling. When the operating system decides to favor another process,

preempting the currently executing process.
" Non preemptive scheduling. When the currently executing process gives up the CPU

voluntarily.

10.15 ys©2020Operating System Concepts

1.6. Process Scheduling
1.6.2. There are three types of schedulers available:
! Long Term Scheduler (Batch Job Scheduler):

" Long term scheduler runs less frequently.
" Long intervals (seconds to minutes)
" Selects processes to bring into ready list
" Average rate of process creation is equal to the average departure rate of processes

from the execution memory.
! Mid-Term Scheduler (Suspend/Swap Scheduler):

" Swaps inactive processes out to disk
" Restores swapped processes from disk on demand
" Selects processes to bring into ready list

! Short Term Scheduler (CPU Scheduler):
" Runs very frequently
" Short intervals (milliseconds)
" Selects processes from ready list to run on CPU cores
" The primary goal of this scheduler is increase process execution rate.

10.16 ys©2020Operating System Concepts

1.6. Process Scheduling

1.6.3. Tasks of the process scheduling for different system types.
! 1. For all system types

" Fairness - every process gets a fair share of CPU time
" Balance - keeping all parts of the system busy (for example: keeping the processor

and I/O devices busy)
! 2. Batch processing systems

" Throughput - the number of tasks per hour
" Turnaround time - minimizing the time spent waiting for service and processing

tasks.
! 3. Interactive systems

" Response time - quick response to requests
" Proportionality - fulfilling the user's expectations (for example: the user is not ready

for a long system load)
! 4. Real time systems

" Deadline Completion - Prevent Loss of Data Value
" Predictability - preventing quality degradation in multimedia systems (for example:

loss of audio quality should be less than video)

10.17 ys©2020Operating System Concepts

2. CPU Scheduling
! The goal of CPU scheduling is to make the system efficient, fast and fair.
! CPU Scheduling Criteria to check when considering the "best" algorithm:

" 1. CPU utilization. To make out the best use of CPU and not to waste any CPU cycle, CPU
would be working most of the time (Ideally 100%). Considering a real system, CPU usage should
range from 40% (lightly loaded) to 90% (heavily loaded.)

" 2. Throughput (пропускная способность). It is the total number of processes completed per
unit time or rather say total amount of work done in a unit of time. This may range from 10/second
to 1/hour depending on the specific processes.

" 3. Turn Around Time - total time taken to finish process execution.
" 4. Waiting Time - the sum of time process waits in ready or In/Out waiting queues to acquire get

control on the CPU.
" 5. Load average. It is the average number of processes residing in the ready queue waiting for

their turn to get into the CPU.
" 6. Response Time - process time taken when process gets CPU for the first time.
" 7. Arrival Time - when process enters Ready queue form Job Queue.

" 8. Burst Time - CPU time required by the process to complete execution.

What is Burst, Arrival, Response, Waiting, Turnaround times and Throughput? Read on After
Academy:
https://afteracademy.com/blog/what-is-burst-arrival-exit-response-waiting-turnaround-time-and-throughput

https://afteracademy.com/blog/what-is-burst-arrival-exit-response-waiting-turnaround-time-and-throughput

10.18 ys©2020Operating System Concepts

2. CPU Scheduling
! Major CPU Scheduling Algorithms:

" 1. First Come First Serve (FCFS) Scheduling (non preemptive)
" 2. Shortest Job First (SJF) Scheduling (non preemptive)
" 3. Priority Scheduling (non preemptive)
" 4. Shortest Remaining Time First (SRTF) Scheduling (preemptive)
" 5. Round Robin (RR) Scheduling (preemptive)
" 6. Multilevel Queue Scheduling (mixing)

10.19 ys©2020Operating System Concepts

2.1. First Come First Serve (FCFS) Scheduling
! Jobs are executed on FCFS basis.
! Easy to understand and implement.
! Poor performance because Twait is high.
! Burst Time refers to the time required in

milliseconds by a process for its
Execution (CPU time of a process).

! Processes table and Gantt chart à

Twaiting=Tstarting - Tarrival (P1=0, P2=21-0, P3=24-0, P4=30-0)
TwaitingAvg=TwaitingAllProcess/Nprocess=(0+21+24+30)/4= 18.75 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitInOutQueue
TturnaroundTotal=(0+21+0)+(21+3+0)+(24+6+0)+(30+2+0)= 107 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=107/4= 26.75 ms

Throughput=(21+3+6+2)/4= 8 ms (one process executes every 8 ms)

10.20 ys©2020Operating System Concepts

2.2. Shortest Job First (SJF) Scheduling
! In SJF shortest process is executed first.
! Best algorithm to minimize waiting time.
! Processes of the same length run in

FCFS mode.
! Difficult to implement since the system

does not know the Burst time of the
process.

! Processes table and Gantt chart à

Twaiting=Tstarting - Tarrival (P4=0, P2=2-0, P3=5-0, P1=11-0)
TwaitingAvg=TwaitingAllProcess/Nprocess=(0+2+5+11)/4= 4.5 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitInOutQueue
TturnaroundTotal=(0+2+0)+(2+3+0)+(5+6+0)+(11+21+0)= 50 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=50/4= 12.5 ms

Throughput=(2+3+6+21)/4= 8 ms (one process executes every 8 ms)

10.21 ys©2020Operating System Concepts

2.3. Priority Scheduling (non-preemptive)
! Priority is assigned for each process.
! Process with highest priority is executed first and so on.
! Processes with same priority are executed in FCFS mode.
! Priority can be decided based on:

" memory requirements,
" time requirements,
" any other resource requirement.

! Disadvantage
The major problem with priority scheduling is starvation
(голодание процесса), because low priority jobs are
waiting for the CPU for a long time.

! Processes table and Gantt chart à

TwaitingAvg=(0+3+24+26)/4= 13.25 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitInOutQueue
TturnaroundTotal=(0+2+0)+(3+21+0)+(24+2+0)+(26+6+0)= 84 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=84/4= 21 ms

Throughput=(3+21+2+6)/4= 8 ms (one process executes every 8 ms)

10.22 ys©2020Operating System Concepts

2.4. Shortest Remaining Time First (SRTF)Scheduling
! In SRTF, jobs are put into ready

queue as they arrive.
! If there is a process with a short

burst time, the existing process is
preempted (вытесняется).

! Processes of the same length run
in FCFS mode.

! TwaitAvg for SRTF is less than
both, SJF and FCFS.

! Processes table & Gantt chart à

Twaiting=Tstarting - Tarrival (P1=12-1, P2=5-3, P3=6-2, P4=3-3)
TwaitingAvg=TwaitingAllProcess/Nprocess=(11+2+4+0)/4= 4.25 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitInOutQueue
TturnaroundTotal=(11+21+0)+(2+3+0)+(4+6+0)+(0+2+0)= 49 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=49/4= 12.25 ms

Throughput=(1+2+2+1+6+20)/4= 8 ms (one process executes every 8 ms)

10.23 ys©2020Operating System Concepts

2.5. Round Robin (RR) Scheduling (preemptive)
! A fixed time is allotted to each process, called quantum, for execution.
! Once a process is executed for given time period that process is preempted and other

process executes for given time period.
! Processes of the same length run in FCFS mode.
! Context switching is used to save

states of preempted processes.
! Processes table and Gantt chart à
! Example for Time Quantum = 5 ms

Twaiting=SUMquant(Tstarting - Tarrival)
P1=0-0+15-5+21-20+26-26+31-31
P2=5-0
P3=8-0+20-13
P4=13-0
TwaitingAvg=(11+5+20+13)/4= 11 ms

Tturnaround=TwaitReadyQueue+Texecution+TwaitInOutQueue
TturnaroundTotal=(16+21+0)+(5+3+0)+(15+6+0)+(13+2+0)= 81 ms
TturnaroudAvg=TturnaroundTotal/Nprocess=81/4= 20.25 ms

Throughput=(5+3+5+2+5+1+5+5+1)/4= 8 ms (one process executes every 8 ms)

10.24 ys©2020Operating System Concepts

2.6. Multilevel & Multilevel Feedback Queue Scheduling

! Multilevel Queue Scheduling
! Multilevel Queue Scheduling combine a advantages of many algorithms.
! Multiple Ready queues are maintained for processes.
! Each queue can have its own scheduling algorithms.
! Priorities are assigned to each queue (multi-priority).

! Multilevel Feedback Queue Scheduling
! The algorithm who maximizes the CPU utilization and throughput, and minimizes the turnaround time, waiting time

and response time, are the best of all.

! Scheduling algorithm can allows a process to move between the queues, if process wait long time
! Variable time quantum’s can used for every process.

! Multiple Queues usage and queuing diagram of Process Scheduling

10.25 ys©2020Operating System Concepts

2.7. CPU Scheduling Conclusion
! We should choose our algorithm such that no processes starve for the resource and

minimize the average waiting time, average response time and average turnaround time.

! FCFS may cause long waiting time.
! SJF and SRTF may cause process starvation (голодание).
! Round Robin scheduling algorithm will behave as FCFS if time quantum is large.
! Multilevel Queue Scheduling combine a advantages of many algorithms.
! Multilevel Feedback Queue Scheduling algorithms is a best scheduling algorithm.

10.26 ys©2020Operating System Concepts

2.8. Scheduling Problems Examples
! Tasks 2.7.1. FCFS

! TwaitAvg= 25 ms
! TthurnaroundAvg= 38.4 ms
! Throughput= 11.6 ms

! Task 2.7.2. SJF
! TwaitAvg= 12.6 ms
! TthurnaroundAvg= 24.2 ms
! Throughput= 11.6 ms

! Task 2.7.3. SRTF
! TwaitAvg= 3.2 ms
! TthurnaroundAvg= 7.2 ms
! Throughput= 4 ms

! Task 2.7.4. Priority
! TwaitAvg= 10 ms
! TthurnaroundAvg= 15.2 ms
! Throughput= 5.2 ms

! Task 2.7.5. RR
! TwaitAvg= 15 ms
! TthurnaroundAvg= 29.66 ms
! Throughput= 14.66 ms

10.27 ys©2020Operating System Concepts

3. Process Operations on Linux
3.1. Process Creation.
! Through appropriate system calls, such as fork or spawn, processes may create

other processes. The process which creates other process, is termed the parent
of the other process, while the created sub-process is termed its child.

! Each process is given an integer identifier, termed as process identifier, or PID.
! The parent PID (PPID) is also stored for each process.

! On a typical UNIX systems
the process scheduler is
termed as sched, and is
given PID 0.

! The first thing done by it at
system start-up time is to
launch init, which gives
that process PID 1.

! Process is created
via fork() or exec().

10.28 ys©2020Operating System Concepts

3. Process Operations on Linux

! Further Init launches all the system daemons and user logins, and becomes the
ultimate parent of all other processes.

! A child process may receive some amount of shared resources with its parent
depending on system implementation. To prevent runaway children from
consuming all of a certain system resource, child processes may or may not be
limited to a subset of the resources originally allocated to the parent.

! There are two options for the parent process after creating the child:
" Wait for the child process to terminate before proceeding. Parent process

makes a wait() system call, for either a specific child process or for any
particular child process, which causes the parent process to block until the
wait() returns. UNIX shells normally wait for their children to complete before
issuing a new prompt.

" Run concurrently with the child, continuing to process without waiting. When
a UNIX shell runs a process as a background task, this is the operation
seen. It is also possible for the parent to run for a while, and then wait for
the child later, which might occur in a sort of a parallel processing operation.

10.29 ys©2020Operating System Concepts

3. Process Operations on Linux
3.2. Process Termination
! By making the exit(system call), typically returning an int, processes may request their
own termination. This int is passed along to the parent if it is doing a wait(), and is typically
zero on successful completion and some non-zero code in the event of any problem.

! Processes may also be terminated by the system for a variety of reasons, including:
! The inability of the system to deliver the necessary system resources.
! In response to a KILL command or other unhandled process interrupts.
! A parent may kill its children if the task assigned to them is no longer needed i.e. if the
need of having a child terminates.

! If the parent exits, the system may or may not allow the child to continue without a
parent (In UNIX systems, orphaned processes are generally inherited by init, which
then proceeds to kill them.)

! When a process ends, all of its system resources are freed up, open files flushed and
closed, etc. The process termination status and execution times are returned to the parent
if the parent is waiting for the child to terminate, or eventually returned to init if the process
already became an orphan.

! The processes which are trying to terminate but cannot do so because their parent is not
waiting for them are termed zombies. These are eventually inherited by init as orphans
and killed off.

10.30 ys©2020Operating System Concepts

3. Process Operations on Linux
3.3. Process related system calls (in Unix)
! fork() creates a new child process

! All processes are created by forking from a parent.
! The init process is ancestor of all processes.
! After fork, parent and child are running same code

! exec() used after fork() to replace the process memory space with a new program code
! exit() terminates a process (parent clean child resources)
! wait() causes a parent to block until child terminates
! Many variants exist of the above system calls with different arguments

10.31 ys©2020Operating System Concepts

4. Manage a Linux running process
! 4.1. Start, stop Jobs and Processes
$ cat file #foreground process=job
$ cat file | wc -l #foreground job=two processes
$ cat file | wc –l & #background job=two processes
[1] 2543 #job ID and last process ID
$ ping abc.lv #foreground process=job
$ Ctrl+c #SIGTERM to current process

$ yes > /dev/null &
[2] 2556
$ jobs -l #jobs listing
[1]+ Done ls -l | wc -l
[2]+ Running yes > /dev/null &

! 4.2. fg, bg
To bring a background process to the foreground
$ fg OR fg %2 #move to foreground
To move a foreground process in the background:
1. Stop the process by typing Ctrl+z.
2. Move the stopped process to the background by typing bg.
$ Ctrl+z #SIGHUP to current process
$ bg #move to background

10.32 ys©2020Operating System Concepts

4. Manage a Linux running process
! 4.3. nohup
A process may not continue to run when you log out or close your terminal. This special case can be avoided by preceding
the command you want to run with the nohup command. Also, appending an ampersand (&) will send the process to the
background and allow you to continue using the terminal. Nohup does is return the running process's PID. Result write or to
redirect file > res-file, or to ./nohup.out, or to ~/nohup.out
$ nohup ping abc.lv > res-file & #keeping a process running

2654

! 4.4. screen (modern nohup analog)
Screen is a terminal multiplexer program that allows you to start a screen session and open any number of windows (virtual
terminals) inside that session. Processes running in Screen will continue to run when their window is not visible even if you
get disconnected.
$ screen #Starting Unnamed Session
$ Ctrl+a ? #Screen help
$ Ctrl+a d #Detach from screen session
$ screen -S name #Starting Named Session
$ screen –ls #Session listing
$ screen –r PID #Reattach to a Screen PID
$ Ctrl+a c #Create new terminal instance
$ Ctrl+a n #Next Screen
$ Ctrl+a p #Previous Screen
$ Ctrl+a S #Split current region horiz
$ Ctrl+a | #Split current region vertic
$ Ctrl+a tab #Switch input to next region

10.33 ys©2020Operating System Concepts

4. Manage a Linux running process
! 4.5. ps
The default output of ps is a simple list of the processes running in your current terminal. As you can see
below, the first column contains the PID.
$ ps
PID TTY TIME CMD
23058 pts/0 00:00:00 bash
23069 pts/0 00:00:00 ps

ps to show me every running process (-e) and a full listing (-f)
$ ps -ef #every running process (-e), full listing (-f)
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Nov16 ? 00:00:19 /sbin/init
root 2 0 0 Nov16 ? 00:00:00 [kthreadd]
root 3 2 0 Nov16 ? 00:00:00 [rcu_gp]
…
root 23039 576 0 14:18 ? 00:00:00 sshd: ys [priv]
root 23045 2 0 14:18 ? 00:00:00 [kworker/0:1]
ys 23057 23039 0 14:18 ? 00:00:00 sshd: ys@pts/0
ys 23058 23057 0 14:18 pts/0 00:00:00 -bash
root 23170 576 0 14:22 ? 00:00:00 sshd: unknown [priv]
…
sshd 23193 23191 0 14:22 ? 00:00:00 sshd: unknown [net]
ys 23209 23058 0 14:23 pts/0 00:00:00 ps –ef

! 4.6. pstree

10.34 ys©2020Operating System Concepts

4. Manage a Linux running process
! 4.7. top - viewing details of running processes and quickly identifying problem (memory and other).
$ top 0. modificators –H, –c, -u
top - 14:30:47 up 1 day, 11:42, 1 user, load average: 0,08, 0,08, 0,03 1.
Tasks: 136 total, 1 running, 135 sleeping, 0 stopped, 0 zombie 2.
%Cpu(s): 0,3 us, 0,0 sy, 0,0 ni, 99,7 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st 3.
MiB Mem : 482,4 total, 11,3 free, 215,4 used, 255,7 buff/cache 4.
MiB Swap: 512,0 total, 501,4 free, 10,6 used. 246,3 avail Mem 5.

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 6.
808 mysql 20 0 1274152 65160 5176 S 0,3 13,2 0:34.55 mysqld

23057 ys 20 0 16192 5024 3972 S 0,3 1,0 0:00.13 sshd
1 root 20 0 104048 7228 4928 S 0,0 1,5 0:19.19 systemd
2 root 20 0 0 0 0 S 0,0 0,0 0:00.00 kthreadd
3 root 0 -20 0 0 0 I 0,0 0,0 0:00.00 rcu_gp
4 root 0 -20 0 0 0 I 0,0 0,0 0:00.00 rcu_par_gp
6 root 0 -20 0 0 0 I 0,0 0,0 0:00.00 kworker/0:0H-kblockd
8 root 0 -20 0 0 0 I 0,0 0,0 0:00.00 mm_percpu_wq
9 root 20 0 0 0 0 S 0,0 0,0 0:07.48 ksoftirqd/0

10 root 20 0 0 0 0 I 0,0 0,0 0:12.37 rcu_sched

Understanding top’s interface:
0. Sort-View - press KEY: M- by memory%, P by cpu%, N by PID, T by Time; H by threads statistic (default tasks statistic), R - ascending order, v -forest
1. SysStatistic: Sys time, Uptime, User sessions, Load Average of CPU over 1, 5, 15 min – number of running processes, example, 0.4 = 40%/coreNr.
2. Process Statistic: Running Processes & Processes State
3. CPU usage in %: user, system, manual changed nice, idle, In/Out wait, hardware $ system interrupt event wait, VM steal time on Virtual Environment
4. Memory usage – total, free, for processes used RAM, for disk buff/cache used RAM
5. SWAP usage – total, free, for processes used SWAP and for processes available RAM (without swap, but include cache usage)
6. Task Area: PID, EUID, PRiority, Nice, VIRT - all memory, RES – RAM, SHR – share memory with other processes, State, %CPU, %MEM, live TIME
6a. Processes States:
(R) Runnable: A process in this state is either executing on the CPU, or it is present on the Run Queue, ready to be executed.
(S) Interruptible Sleep: Processes in this state are waiting for an event to complete (Event Queue).
(D) Uninterruptible Sleep: In this case, a process is waiting for an I/O operation to complete (In/Out Queue).
(T) Stopped: These processes have been stopped by a job control signal (such as by pressing Ctrl+Z).
(Z) Zombie: Terminated processes whose data structures are still around and parent is not around are called zombies.

10.35 ys©2020Operating System Concepts

4. Manage a Linux running process
! 4.8. kill
Kill is used to send a signal to a process. The most commonly used signal is "terminate"
(SIGTERM) or "kill" (SIGKILL). However, there are many more. Below are some examples.
The full list can be shown with kill -L.
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

The default signal is 15, which is SIGTERM
$ kill 20896

Notice signal number nine is SIGKILL. Usually, we issue a command such as
$ kill -9 20896

$ kill -15 20226 1823 26785

$ kill –s KILL 3245

Keep in mind that many applications have their own method for stopping.
! 4.9. nise, renice
$ nice -11 yes>/dev/null& #set the priority of a command yes

$ renice 5 20901 #changing priority of the proc. 20901

$ top –u student #check the nice value of a process

nice -–10 command #set the negative priority for a cmnd.

renice –n 15 –p 235 #changing priority of the proc. 235

10.36 ys©2020Operating System Concepts

5. Introduction to Threads
! Thread is an execution unit which consists of its own program counter, a stack, and a set

of registers. Threads are also known as Lightweight processes.
! Threads are popular way to improve application through parallelism. The CPU switches

rapidly back and forth among the threads giving illusion that the threads are running in
parallel.

10.37 ys©2020Operating System Concepts

5. Introduction to Threads
! 5.1. Thread Life Cycle in OS

10.38 ys©2020Operating System Concepts

5. Introduction to Threads
! 5.2. Multithreading in OS
Multithreading in an operating system divided into four categories:

1. One-To-One Model. One Process, One Thread: In this traditional approach, the process
maintains only one thread. For example, the MS-DOS operating system supports this approach.

2. Many-To-One Model. Multi Processes, One Thread: Operating system supports multiple user
processes but only support one thread process. For example UNIX.

3. One-To-Many Model. One Process, Multi Threads: In this approach, a process divided into the
number of threads. For example, Java Runtime Environment.

4. Many-To-Many Model. Multi Processes, Multi Threads: In this approach, a process divided into
the number of threads. For example Window 2000, Solaris, LINUX.

10.39 ys©2020Operating System Concepts

5. Introduction to Threads
! 5.3. Types of Thread
User threads, are above the kernel and without kernel support. These are the
threads that application programmers use in their programs.
Kernel threads are supported within the kernel of the OS itself. All modern OSs
support kernel level threads, allowing the kernel to perform multiple simultaneous
tasks and/or to service multiple kernel system calls simultaneously.
! 5.4. Multithreading Models
The user threads must be mapped to kernel threads, by following strategies:

" Many-To-One Model
" One-To-One Model
" Many-To-Many Model

! 5.4.1. Many-To-One Model
" In the many-to-one model, many user-level threads

are all mapped onto a single kernel thread.
" Thread management is handled by the thread library

in user space, which is efficient in nature.

10.40 ys©2020Operating System Concepts

5. Introduction to Threads
! 5.4.2. One-To-One Model

" The one-to-one model creates a separate kernel
thread to handle each and every user thread.

" Most implementations of this model place a limit
on how many threads can be created.

" Linux and Windows from 95 to XP implement the
one-to-one model for threads.

! 5.4.3. Many-To-Many Model
" The many-to-many model multiplexes any number

of user threads onto an equal or smaller number of
kernel threads, combining the best features of the
one-to-one and many-to-one models.

" Users can create any number of the threads.
" Blocking the kernel system calls does not block the

entire process.
" Processes can be split across multiple processors.

10.41 ys©2020Operating System Concepts

5. Introduction to Threads
5.5. Difference Between Process and Thread in OS
" A process cannot share the same memory space whereas; threads can share memory and files.
" It takes more time to create a process whereas; it takes less time to create a thread.
" The process takes more time to complete the execution and termination whereas; thread takes
less time to terminate.

" Process execution is slow, but threads execute very fast.
" Context switching time between two processes is much whereas; context switching time between
two threads is less as compared to the process.

" Implementing the communication between two processes is more difficult, but communication
between the two threads is easy to implement because threads share the memory.

" System calls are required to communicate with each process, but in the case of a thread, system
calls not necessary.

" The loosely coupled process, but tightly coupled threads.
" The process requires more resources to execute whereas; the thread requires fewer resources to
execute. Therefore, the thread is called a lightweight process.

" A process is not suitable for parallel activity-based whereas threads are suitable for the parallel
activity.

10.42 ys©2020Operating System Concepts

5. Introduction to Threads
! 5.6. Processes and Threads in Windows (Process Explorer)

10.43 ys©2020Operating System Concepts

6. Process Management Implementations
! 6.1. OS NetWare 4.x
non-preemptive algorithm

10.44 ys©2020Operating System Concepts

6. Process Management Implementations
! 6.2. OS-9
mix algorithm

10.45 ys©2020Operating System Concepts

6. Process Management Implementations
! 6.3. OS/2
mix algorithm

10.46 ys©2020Operating System Concepts

6. Process Management Implementations
! 6.4. Linux
mix algorithm

10.47 ys©2020Operating System Concepts

6. Process Management Implementations
! 6.5. Windows
mix algorithm

10.48 ys©2020Operating System Concepts

7. Inter-process Communication
! Two fundamental models:

10.49 ys©2020Operating System Concepts

The End

