
1.1 ys©2019Operating System Concepts

Operating Systems
LS-09. OS Permissions. SUID/SGID/Sticky. Extended Attributes.

1.2 ys©2019Operating System Concepts

Linux/UNIX Security Basics

Agenda
! UID
! GID
! Superuser
! File Permissions
! Umask
! RUID/EUID, RGID/EGID
! SUID, SGID, Sticky bits
! File Extended Attributes
! Mount/umount
! Windows Permissions
! File Systems Restriction

1.3 ys©2019Operating System Concepts

Domain Implementation in Linux/UNIX

! Two types domain (subjects) groups
! User Domains = User ID (UID>0) or User Group ID (GID>0)
! Superuser Domains = Root ID (UID=0) or Root Group ID (root can do everything,

GID=0)
! Domain switch accomplished via file system.

! Each file has associated with it a domain bit (SetUID bit = SUID bit).
! When file is executed and SUID=on, then Effective UID is set to Owner of the file

being executed. When execution completes Efective UID is reset to Real UID.
! Each subject (process) and object (file, socket,etc) has a 16-bit UID.

! Each object also has a 16-bit GID and each subject has one or more GIDs.
! Objects have access control lists that specify read, write, and execute

permissions for user, group, and world.

1.4 ys©2019Operating System Concepts

Subjects and Objects

Subjects = processes
(Effective UID, EGID)

Objects = files (regular, directory,
devices /dev, ram /proc)

RUID (EUID) Owner permissions (UID)

RGID-main (EGID)
+RGID-list

Group Owner permissions (GID)

Others RUID, RGID Others ID permissions

1.5 ys©2019Operating System Concepts

The Superuser (root)
• Almost every Unix system comes with a special user in the /etc/passwd file with a

UID=0. This user is known as the superuser and is normally given the username root.

• Any process with a EUID=0 runs without security checks and is allowed to do almost
anything. Normal security checks and constraints are ignored for the superuser.

• Any Username Can Be a Superuser
root:x:0:1:Operator:/root:/bin/bash
student:x:0:1001:Course Student:/home/student:/bin/csh
trump:x:1002:1001:Donald Trump:/home/trump:/bin/ksh

• Special configured user can switch session account:
switch session to root switch session to user execute command as root
$ su # su user $ sudo command

• Su switches you to the root user account and requires the root account's password.

• Sudo runs a single command with root privileges – it doesn't switch to the root user
and dont requires root user password.

What the Superuser Can Do

• Device control
• Access any working device.
• Shut down or reboot the computer. Set the date and time.
• Read or modify any memory location.
• Create new devices (anywhere in the filesystem) with the mknod command.

1.6 ys©2019Operating System Concepts

The Superuser (root)
What the Superuser Can Do
• Process control

• Change the nice/renice value of any process.
• Send any signal to any process (see Signals).
• Alter "hard limits" for maximum CPU time as well as maximum file, data segment, stack

segment, and core file sizes (see Limits).
• Turn accounting and auditing on and off.
• Bypass login restrictions prior to shutdown. (Note that this may not be possible if you have

configured your system so that the superuser cannot log into terminals.)
• Change his process UID to that of any other user on the system.
• Log out all users and prevent new logins.

• Network control
• Run network services on "trusted" ports.
• Reconfigure the network.
• Put the network interface into "promiscuous mode" and examine all packets on the network

(possible only with certain kinds of networks and network interfaces, see Wireshark).

• Filesystem control
• Read, modify, or delete any file or program on the system.
• Run any program.
• Change a disk's electronic label.
• Mount and unmount filesystems.
• Add, remove, or change user accounts.
• Enable or disable quotas and accounting.
• Use the chroot() system call, which changes a process's view of the filesystem root directory.
• Write to the disk after it is "100 percent" full.

1.7 ys©2019Operating System Concepts

" inodes contain a lot of information about a file:
! mode - type and permissions of file;
! number of links (names) to the file;
! owner's UID;
! owners GID;
! size - number of bytes in file, blocks in dorectory;
! last inode accessed, modified, changed, deleted times;
! physical disk addresses (direct and indirect links to file blocks);
! number of blocks;
! shadow inode link with extend access information (ACL);

" Used commands for change file parameters: chmod, ln, chown, chgrp, edit, touch,
rename, setacl, getacl, chattr, lsattr. After ls –l you see long files information:

Changing a File’s Parameters

1.8 ys©2019Operating System Concepts

Changing a File's Owner or Group
" The chown and chgrp commands allow you to change the owner/group of a file.
" Only the superuser can change the owner of a file under most modern versions of Unix.
" The chown command has the form:

chown [-R] owner filelist
! -R – recursive change
! owner - the file's new owner; specify the owner by name or by decimal UID a valid

user with an entry in /etc/passwd
! filelist - The list of files whose owner you are changing

" Under most modern versions of Unix, you can change the group of a file if You are:
! the file's owner and are in the group to which you are trying to change the file,
! the superuser.

$ chgrp [-R] group filelist

" Some versions of chown can also change a file's group at the same time they change
its owner. The syntax is usually:

chown [-R] owner:group filelist

1.9 ys©2019Operating System Concepts

Objects mode = type + permissions

-rwxrw-r--

File type
- : plain file
d : directory
c : character device (tty, printer)
b : block device (disk, CD-ROM)
l : symbolic link
s : socket
=, p : pipe (FIFO)

Access granted to owner

Access granted to group member

Access granted to others

How to read a –rwxrw-r– permission
r : read / w : write / x : execute

user group other
rwx
111

rw-
110

r--
100

4+2+1
7

4+2+0
6

4+0+0
4

1.10 ys©2019Operating System Concepts

File’s & Directory Permissions
Standard File Permissions Interpretation
• If you have read permission for a file, you can view its contents.
• If you have write permission for a file, you can change its contents.
• If you have execute permission for a file, you can run the file as a program.
• If you have read+execute permission for a file, you can run the file as a script.
Directory Permissions Interpretation
• If you have read+execute permission for a directory, you can list the contents of the

directory. Only read is bad permission.
• If you have write+execute permission for a directory, you can create or remove files or

sub-directories inside that directory. Only write is bad permission.
• If you have execute permission for a directory, you can change to this directory using the

cd command, or use it as part of a pathname.
Special File: Block, Character, Pipe Permissions Interpretation
• If you have read permission for a file, you can view its contents.
• If you have write permission for a file, you can alter its contents.
• Execute permission for a file not interpreted.

Special File: Link Permissions Interpretation
• Read, Write, Execute permissions for a file not interpreted and permission controlled

in real file, therefore the rights on the line are displayed as lrwxrwxrwx.

1.11 ys©2019Operating System Concepts

chmod: Changing a File's Permissions

• When you create a file, its initial permissions depend on your umask value (discussed later).

• You can change a file's permissions with the chmod command or the chmod() system call.

• If you are logged in as the superuser, you can change the permissions of any file.

• You can change a file's permissions only if you are the file's owner.

• The symbolic form of the chmod command:

chmod [-R] [agou][+-=][rwxst] filelist

• This command changes the permissions of filelist (a single file or a group of files).

• The letters agou specify whose privileges are being modified. You may provide one or more.

• The symbols +-= specify what is to be done with the privilege. You must type only 1 symbol

• The last letters rwxst specify which privilege will be modified: read, write, execute bits and
suid, sgid, sticky bits.

• The -R option causes the chmod command to run recursively. If you specify a directory
in filelist, that directory's permissions change, as do all of the files contained in that
directory. If the directory contains any subdirectories, the process is repeated.

1.12 ys©2019Operating System Concepts

chmod: Changing a File's Permissions

Letter Meaning
a Modifies privileges for all users
g Modifies group privileges
o Modifies others' privileges
u Modifies the owner's privileges

Symbol Meaning
+ Adds to the current privilege
- Removes from the current privilege
= Replaces the current privilege

Letter Meaning
r Read access
w Write access
x Execute access
s SUID or SGID
t Sticky bit[9]

Examples:
$ chmod a+rwx file
$ chmod u=rw file
$ chmod ag-r,o+wx f1 f2
$ chmod u=s file
$ chmod ug+wxs,o-t file
$ chmod a+rwx,go-wx f1
$ chmod a-rwx,u=rwxs f1

1.13 ys©2019Operating System Concepts

chmod: Changing a File's Permissions

• You can also use the chmod command to set a file's permissions, without regard to the settings that
existed before the command was executed.

• This format is called the absolute (or numeric, or octal) form of the chmod command:

chmod [-R] mode filelist

• The mode to which you wish to set the file, expressed as an octal value with 3 octal numerals. Every
octal numeral is interpreted as 3 binary bits (rwx)
Example. Octal, binary and symbolic permissions:
$ chmod 000 file 000 000 000 ---------
$ chmod 640 file 110 100 000 rw-r-----
$ chmod 123 file 001 010 011 --x-w--wx
$ chmod 777 file 111 111 111 rwxrwxrwx

1.14 ys©2019Operating System Concepts

chmod: Changing a File's Permissions

Octal Binary Symbolic Allowed file accesses
700 111 000 000 rwx------ Owner can read, write and execute
770 111 111 000 rwxrwx--- Owner and group can read, write, execute
640 110 100 000 rw-r----- Owner can read and write; group can read
644 110 100 100 rw-r--r-- Owner can read and write; all other can read
655 110 101 101 rwxr-xr-x Owner can do everything, rest can read & execute
000 000 000 000 --------- Nobody has any access
007 000 000 111 ------rwx Only other have access (strange, but legal)

Common directory permissions

Octal number Directory Permission

0755 / Anybody can view the contents of the directory, but only the owner or
superuser can make changes.

1777 /tmp Any user can create a file in the directory, but a user cannot delete another
user's files.

0700 $HOME A user can access the contents of his home directory, but nobody else can.

Common file permissions

1.15 ys©2019Operating System Concepts

chmod: Changing a File's Permissions
Common file permissions

Octal
number File Permission

0755 /bin/ls Anybody can copy or run the program; the file's owner can modify it.

0711 $HOME

Locks a user's home directory so that no other users on the system
can display its contents, but allows other users to access files or
subdirectories contained within the directory if they know the names
of the files or directories.

0700 $HOME Locks a user's home directory so that no other users on the system
can access its contents, or the contents of any subdirectory.

0600 /usr/mail/$USER and
other mailboxes

The user can read or write the contents of the mailbox, but no other
users (except the superuser) may access it.

0644 Any file The file's owner can read or modify the file; everybody else can only
read it.

0664 groupfile The file's owner or anybody in the group can modify the file;
everybody else can only read it.

0666 writable Anybody can read or modify the file.

0444 readable Anybody can read the file; only the superuser can modify it without
changing the permissions.

1.16 ys©2019Operating System Concepts

ACL

Access Control Lists

ACLs are a mechanism for providing fine-grained control over
the access to files.

Without ACLs, the only way that you can grant permission to a
single person or a group of people to access a specific file or
directory is to create a group for that person or group of people.

With ACLs you can grant the access directly. For example, you
can allow four different groups to a read a file without making it
world-readable, or allow two users to create files in a directory
without putting them in a group together.

Commands:
$ getfacl abc.txt
file: abc.txt
owner: student
group: users
user::rw-
group::rw-
other::r--
$ setfacl [-bkndRLP] { -m|-M|-x|-X ... } file ...

Example:
user::rw-
user:lisa:rw-
user:vasja:rwx
group::r--
group:toolies:rw-
other::r--

1.17 ys©2019Operating System Concepts

umask
• The umask (Unix shorthand for "user file-creation mode mask") is a 3 or 4 octal number

that Unix uses to determine the file permission for newly created files and directory.

$ umask NNN
• Every process has its own umask, inherited from its parent process.

• By default, Linux/Unix specify an octal standard mode of 666 (any user can read or write
the file) when they create new files.

• By default, Linux/Unix specify an octal standard mode of 777 (any user can read, write,
or look the directory) when they create new directory.

• For Result Permissions using bitwise AND with the default permissions and the
complement of the umask value (the bits that are not set in the umask).

• Normally, you or your system administrator set the umask in your .login, .cshrc, or .profile
files, or in the system /etc/profile or /etc/cshrc file. For example, you may have a line that
looks like this in one of your startup files:
Set the user's umask
umask 033

• The most common umask values are 022, 027, and 077. A umask value of 022 lets the
owner both read and write all newly created files, but everybody else can only read them.

1.18 ys©2019Operating System Concepts

umask
Rules.
File Result Permissions Bits = NOT(umask Bits) AND (File Standard Permissions Bits)
Directory Result Permissions Bits = NOT(umask Bits) AND (Directory Standard Permissions Bits)

Example.
After umask 174

174 (001 111 100) Umask
- 603 (110 000 011) NOT(Umask)
* 666 (110 110 110) Default file-creation mode

602 (110 000 010) Result mode for new file

174 (001 111 100) Umask
- 603 (110 000 011) NOT(Umask)
* 777 (111 111 111) Default directory-creation mode

603 (110 000 011) Result mode for new directory

Set and test umask value.
$ umask # current umask
0002
$ umask 174 # new umask
$ mkdir dir1 # create new directory
$ touch file1 # create new file
$ ls -l # list permissions
drw-----wx 2 std std 512 Sep 1 20:59 dir1
-rw-----w- 1 dave dave 0 Sep 1 20:59 file1

Task 2.
Find result permissions for new files and
directory after command:
$ umask 123
$ umask 325
$ umask 547
$ umask 406
$ umask 737
$ umask 100
$ umask 372
$ umask 077
$ umask 345
$ umask 704

1.19 ys©2019Operating System Concepts

RUID & EUID

" The UID of the user who started the program is used as its RUID and EUID.
" The EUID affects what the program can do (e.g. create, delete files).
" For example, the owner of /usr/bin/passwd and nano programms is root:

$ ls -l /etc/shadow /usr/bin/cat /usr/bin/passwd
-rw------- 1 root root 4270 ноя 11 13:09 /etc/shadow
-rwxr-xr-x 1 root root 246160 июн 12 2019 /usr/bin/cat
-rwsr-xr-x 1 root root 63736 июл 27 2018 /usr/bin/passwd

" But when we use nano, its RUID=EUID=UID is user (not root), so we can only edit user files.

" Programs can change to use the EUID the UID of the program owner if SUID bit
enables for program,
! e.g. the /usr/bin/passwd program changes to use its EUID (root) so that it can

edit the /etc/passwd file (EUID=0 (root), RUID=UID (user).

" When a process executes, it has more values related to file permission
! a Process ID, an Parent Process ID (PID-PPID)
! a Real User ID, an Effective User ID (RUID-EUID)
! a Real Group ID, an Effective Group ID (RGID-EGID)

" When you login, your login shell process’ values are your user ID and group ID

1.20 ys©2019Operating System Concepts

SUID/SGID/sticky bits other interpretations
! SUID (set uid) --s------

! Processes are granted access to system resources
based on user who owns the program-file.

! SGID (set gid) -----s--
! (For program-file) Same with SUID except group is

affected.
! (For directory) Files created in that directory will

have their group set to the directory's group.
! Sticky bit --------t

! This is obsolete with files, but is used for directories.
! If set on a directory, then a user may only delete

files that he owns or for which he has explicit write
permission granted, even when he has write access
to the directory. (e.g. /tmp) # chmod 1777 /tmp

1.21 ys©2019Operating System Concepts

SUID/SGID/sticky bits

Problems with SUID
Any program can be SUID, SGID, or both SUID and SGID.
Because this feature is so general, SUID/SGID can open up
some interesting security problems.

Task. Finding all of the SUID and SGID files
find / \(-perm -004000 -o -perm -002000 \) -type f -print
$ find / \(-perm -004000 -o -perm -002000 \) -type f –print 2>/dev/null

1.22 ys©2019Operating System Concepts

Example. Octal, binary and symbolic permissions:
$ chmod 7000 file 111 000 000 000 --S--S--T
$ chmod 5740 file 101 111 100 000 rwsr----T
$ chmod 1123 file 001 001 010 011 --s-w--wx
$ chmod 0777 file 000 111 111 111 rwxrwxrwx

SUID/SGID/sticky bits

Use the chmod command with 4 numerals octal mode

1.23 ys©2019Operating System Concepts

Files Extended Attributes
• File Attributes Alongside the standard permissions there is another

system that can be used to change the way a file can be used.

• Extended attributes are supported by all major Linux file systems,
including Ext2, Ext3, Ext4, Btrfs, JFS, XFS, and Reiserfs.

• Attributes do not show up in the 'ls' command. The lsattr and chattr
command is used to show, set and drop these attributes.

• The symbolic form of the chattr command:

chattr [-R] [+-=][AacDijsSTtu] filelist

Examples:
lsattr testfile
------------- testfile
chattr +i testfile
lsattr testfile
----i-------- testfile
rm -f testfile
rm: cannot remove `testfile': Operation not permitted
chattr -i testfile
rm -f testfile
ls testfile
ls: testfile: No such file or directory
chattr +Si test.txt
chattr –ai test.txt
chattr =aiA test.txt

The following attributes are
available Linux:

a: append only
c: compressed
d: no dump
e: extent format
i: immutable
j: data journalling
s: secure deletion
t: no tail-merging
u: undeletable
A: no Access time updates
C: no copy on write
D: synchronous directory updates
S: synchronous updates
T: top of directory hierarchy

Task:
$ chattr +AcstuS testfile
$ lsattr testfile
suS----Ac--t---- b
$ lsattr –l testfile
…?

1.24 ys©2019Operating System Concepts

Files Extended Attributes
• 'A' When a file with the ’A’ attribute set is accessed, its atime (access time) record is not modified. This

avoids a certain amount of disk I/O, typically for temporary files.

• 'a' A file with the ‘a’ attribute set can only be open in append mode for writing. Only the superuser or a
process possessing the CAP_LINUX_IMMUTABLE capability can set or clear this attribute. This is
probably most effectively used on system log files, to prevent intruders removing evidence of their
passage.

• 'c' A file with the ‘c’ attribute set is automatically compressed on the disk by the kernel. A read from
this file returns uncompressed data. A write to this file compresses data before storing them on the
disk.

• 'D' When a directory with the ‘D’ attribute set is modified, the changes are written synchronously on the
disk; this is equivalent to the ‘dirsync’ mount option applied to a subset of the files. When this attribute
is set the file system work on down speed run.

• 'i' A file with the ‘i’ (immutable) attribute cannot be modified: it cannot be deleted or renamed, no link
can be created to this file and no data can be written to the file. Only the superuser or a process
possessing the CAP_LINUX_IMMUTABLE capability can set or clear this attribute.

• 'j' A file with the ‘j’ attribute has all of its data written to the ext3 journal before being written to the file
itself. Only the superuser or a process possessing the CAP_SYS_RESOURCE capability can set or
clear this attribute.

• 's' When a file with the ‘s’ attribute set is deleted, its blocks are zeroed and written back to the disk.
When this attribute is set the file system work on down speed run.

1.25 ys©2019Operating System Concepts

Files Extended Attributes
• 'S' When a file with the ‘S’ attribute set is modified, the changes are written synchronously on the disk;

this is equivalent to the ‘sync’ mount option applied to a subset of the files. It is most often used for the
'cooked files' used by database programs to hold their data.

• 'T' The 'T' attribute is only usable when using the 2.6.x kernel. The 'T' attribute is designed to indicate
the top of directory hierarchies, this is designed for use by the Orlov block allocator. The newer file
allocation policies of the ext2 and ext3 filesystems place subdirectories closer together allowing faster
use of a directory tree if that directory tree was created with a 2.6 kernel.

• 't' A file with the ’t’ attribute will not have a partial block fragment at the end of the file merged with
other files (for those filesystems which support tail-merging). This is necessary for applications such as
LILO which read the filesystems directly, and which don’t understand tail-merged files.

• 'u' When a file with the ‘u’ attribute set is deleted, its contents are saved. This allows the user to ask for
its undeletion. This is another attribute that is supported by everything except the kernel itself.

Common use Extended Attributes:
chattr -R +i /bin /boot /etc /lib /sbin
chattr -R +i /usr/bin /usr/include /usr/lib /usr/sbin
chattr -R +a /var/log/messages /var/log/secure

Never use chattr +i for directory /, /dev, /tmp, /var !!!
Linux Capabilities. The root can set or clear [immutable/append-only attributes]. With a Linux kernel, you
can prevent clearing these flags by dropping CAP_LINUX_IMMUTABLE from the Capability Bounding Set
by doing flags:

echo 0xFFFFFDFF ?> /proc/sys/kernel/cap-bound

1.26 ys©2019Operating System Concepts

File system mount options
" The entire hierarchy can actually include many disk drives.

! some directories can be on other computers
" Turning off SUID / SGID / EXECUTE in mounted file system

! use nosuid (nosgid, noexec and nodev if possible) when mounting remote file
system or allowing users to mount floppies or CD-ROMs (ReadOnly –ro)

" See /etc/fstab

/

bin etc users tmp usr

hollid2 scully

1.27 ys©2019Operating System Concepts

Windows Permissions 1/5
https://www.installsetupconfig.com/win32programming/accesscontrollistacl1.html

! 1. Two Basic Parts of the Access Control Model:
! Access tokens, which contain information about a logged-on user (process, threads)
! Security descriptors, which contain the security information that protects a object.

! 2. How Windows Access Check Works
! When a process take to access securable object, the system looks for Access Control

Entries (ACEs) in the object's DACL (discretionary access control list) that apply to the process.
! Each ACE in the object's DACL specifies the access rights allowed or denied for a trustee,

which can be a user account, a group account, or a logon session SIDs (security identifiers).

https://www.installsetupconfig.com/win32programming/accesscontrollistacl1.html

1.28 ys©2019Operating System Concepts

Windows Permissions 2/5

! 4. Security Descriptor contain:
Object SID object owner
Primary Group SID object primary group
SACL (Secure ACL) that specifies the types of access attempts that generate audit records
for the object.
DACL that specifies the access rights allowed or denied to particular users or groups in ACEs.
ACEs (Access Control Entry), each ACE controls or monitors access to an object by a
specified SIDs.

! 3. Access tokens contain:
User SID (Secure ID) for the user's account.
Primary Group SID for the primary group.
Groups SIDs for the groups of which the user is a member.
A list of the Privileges held by either the user or the user's groups.
Logon SID that identifies the current logon session.
An owner SID for process.
The default DACL that the system uses when the user creates a securable object without
specifying a security descriptor.
The source of the access token.
Whether the token is a primary or impersonation token (олицетворение).
An optional list of restricting SIDs.
Current impersonation levels.
Other statistics.

1.29 ys©2019Operating System Concepts

Windows Permissions 3/5

! 5. Interaction Between Process and Securable Objects

1.30 ys©2019Operating System Concepts

Windows Permissions 4/5
! 6. DACLs and ACEs ! 7. Securable Object Types

! Files or directories on an NTFS
! Named pipes, Anonymous pipes
! File-mapping objects
! Access tokens
! Window-management objects
! Registry keys
! Windows services
! Local or remote printers
! Network shares
! Interprocess synchronization objects
! Job objects
! Active Directory service objects

! 8. ACE structure:
! SID,
! Access Mask,
! Type bits,
! Child Inherit bits

Because Deny ACE 1
analyze first

! 9. Have 6 ACE types
! Deny DACL
! Allow DACL
! SACL
! 3 ACE types for Active Directory specific

1.31 ys©2019Operating System Concepts

Windows Permissions 5/5
! 10. Access Rights and Access Masks

! An access mask is a 32-bit value, whose bits correspond to the access rights supported by an object.
! These rights are used in ACEs and are the primary means of specifying the requested or granted

access to an object.
! High-order 4 bits are used to specify generic access rights that each object type can map to a set of

standard and object-specific rights.
! The AS-bit corresponds to the right to access the object's SACL, (manage auditing and security log

privilege),
! Next 8 bits are for standard access rights, which apply to most types of objects,
! Low-order 16 bits are for object-specific access rights.

Standard Access Rights
8, 9, 10 – Reserved
11 – SYnhronize
12 – Write Owner
13 – Write Dacl
14 – Read Control
15 – DElete

0 – Generic Read
1 – Generic Write
2 – Generic eXecute
3 – Generic All
4, 5 – Reserved
6 – Maximum Allowed
7 – Access System security (SACL)

X - Object-specific Access Rights
16–31 – bits

1.32 ys©2019Operating System Concepts

Access control in Linux and Windows

Characteristic Linux Windows
Access rights Read, write, execute for U/G id,

Extended atributes
Support up to 32 different
access rights (16 specific)

Inheritance Mainly umask, but with SGID
the objects inside can inherit

Support explicitly specified
inheritance

ACE Types Only have Allow in ACL Allow, deny, audit
Access control
granularity

User level, controlled by UID Thread level, controlled by
restricted context in Access
Token

There is an extended
implementation on special
UNIX / Linux

1.33 ys©2019Operating System Concepts

File Systems Restrictions

Comparison of file systems
https://en.wikipedia.org/wiki/Comparison_of_file_systems

https://en.wikipedia.org/wiki/Comparison_of_file_systems

1.34 ys©2019Operating System Concepts

The End

