
ys©2019Operating System Concepts

LS-06:
FILE SYSTEM EXAMPLES

6.2 ys©2019Operating System Concepts

Agenda
Standard FS
! Old FS
! Linux Standard FS
! Windows Standard FS

Linux FSH
! Linux File System Hierarchy (FSH)
! Linux File Systems Commands
! Linux VFS
! Linux Pseudo FS

Modern FS
! Journaling FS
! Advanced FS
! Distributed FS

ys©2019Operating System Concepts

STANDARD FS
Old FS
Linux Standard FS
Windows Standard FS

6.4 ys©2019Operating System Concepts

Standard File Systems Examples
Historical & Standard FS Examples
! Mark 1 FS (1958)
! TAR FS (1979)
! RT-11 (1975)

! s5fs - UNIX System V AT&T (1982)
! ffs - Fast File System BSD (1983)
! ufs - Unix FS BSD & Sun Microsystem Solaris (1984)
! Modern BSD use 3-layers UFS/FFS/LFS
! HFS – HierarchicalFileSystem,MacOS<8.1,16bit,<1998

àHFS+ (MacOS 8.1, 32bit-address) (since 1998)
àHFSJ (MacOS 10.2.2, journal)
à HFSX or APFS (MacOS 10.3, more features)

! CP/M – Digital Research (1977)
! FAT 12/16/32
! extFAT
! hpfs IBM-Microsoft High performance FS, OS/2 (1988)
! ntfs – Microsoft New Technology FS, Windows (1993)

Class of file system by block allocation-addresation
! Contiguous blocks
! Linked-list blocks
! FAT-based
! Inode-based
! Extent-based
! Balanced Tree.

Continue Allocation (TAR, RT-11)

Chain
Allocation
(FAT)

Index
Allocation
(s5fs)

6.5 ys©2019Operating System Concepts

File Systems (ERMA) Mark 1

ERAM - first file system (1958)
! The oldest file system ever

recorded is the Electronic
Recording Machine
Accounting (ERMA) Mark 1,
a hierarchical file system that
was introduced in 1958 at the
Eastern Joint Computer
Conference.

! In summary, the purpose of
the file system was to reduce
the inefficiencies and errors
that resulted from the lack of
an organized system

! The idea was to provide more
accurate information more
quickly and efficiently.

A representation of the ERMA Mark 1 file system

6.6 ys©2019Operating System Concepts

File Systems TAR

Continue Allocation (TAR, RT-11)

! TAR (Tape ARchiver) (1979)
! TAR together with GZ active use today for

archiving file structure in one compact file for
sending this file over networks, for packet
distribution, for tape archiving.

! Structure:
! TAR Header
! File-1 name, size, attributes, blocks
! …
! File-N name, size, attributes, blocks
! Free Space

! Advantages: simple, high read/create speed
! Disadvantages:

! Long time of file seek (seek have before
read, find, create,…), because need
read parameters of every file.

! Problem after delete file – holes
structure.

! Problem after resize file

6.7 ys©2019Operating System Concepts

File Systems RT-11
! RT-11 (Real Time OS, PDP-11 DEC (1975-199x)
! More usability then at TAR
! Have only 1 catalog
! Structure:

! RT-11 Header
! Catalog

4 File-1 (name, start, size, attributes)
4 …
4 File-n (name, start, size, attributes)
4 FreeSpace-1
4 …
4 File-n+1 (name, start, size, attributes)

! File-1 blocks
! …
! FreeSpace1 blocks
! File-n+1 blocks
! …

! Periodically need compacting of file system after remove and resize files.

Continue Allocation (TAR, RT-11)

6.8 ys©2019Operating System Concepts

File Systems s5fs

s5fs Directory Structure
! Under UNIX directories are special (OS writable

only) files.
! The directory file is an unsorted linked list (records)

of filenames to file-inode (attributes and location of
file on hard disk)

s5fs Structure (One partition)
! s5fs - original FS of UNIX

System V, AT&T Corp. (1982)

s5fs Super Block contains:
! size in blocks of the file system
! size in blocks of the inode array
! number of free blocks
! number of free inodes
! partial list of free inodes

! An inode with di_mode == 0 is free.
! When the partial list becomes empty the

array of inodes is scanned to find more
free inodes.

! partial list of free blocks
! the first part of the list is in the superblock

and the remaining in other blocks — it’s
not possible to inspect a block to see if
it’s in use or not.

6.9 ys©2019Operating System Concepts

File Systems s5fs (Cont.1)

! i-nodes contain a lot of file information
in 64B (B - Byte)
! mode: type (4 bits) and mode

(12 bits) of file (2B)
! number of links to the file (2B)
! owner's UID (2B)
! owners GID (2B)
! number of bytes in file (4B)
! 3 times (last accessed, modified,

inode changed) (3x4B)
! physical disk addresses (direct

pointers) (10x3B)
! physical disk addresses (indirect

pointers) (3x3B)
! generation (1B)

! An inode with mode = 0 is free

! MaxFileSize(forBlocksSize=512bytes)
=(10+

s5fs i-node Structure s5fs File Blocks allocation

6.10 ys©2019Operating System Concepts

File Systems s5fs (Cont.2)
s5fs File Types
! File types&properties shown by typing ls -l
! Create Hard link and Symbolic link

$ ln oldName newName
$ ln -s oldName newName

Disadvantages s5fs
! Short file name <=14 symbols.
! Data blocks allocated randomly on all disk
! Inodes allocated randomly for catalogs
! Low of block seek speed (inode at start of disk, data blocks end).
! Max numbers of userID <216=65536
! Max numbers of files < 216 =65536
! Max file size 1 by address length 1 < 216 Bytes = 32 MiB.
! Max file size 2 by point < (10+256+256*256+256*256*256)*512 = =8623625216 Bytes = 8224 MiB.

! Analyse s5fs and ffs
! s5fs use only 4% of disk bandwidth.
! Read throughput increased from 29KB/s on s5fs to 221 KB/s on FFS.
! Write throughput increased from 48KB/s on s5fs to 142 KB/s on FFS.
! Optimization results of ffs 10-20 times vs original s5fs speeds!

6.11 ys©2019Operating System Concepts

File Systems ffs and ufs
ffs - Fast File System, 4.2BSD, 1983
ufs – UNIX File System, 4.4BSD, 1984
Optimizations:
! ffs divides a partition into a number of cylinder groups.
! Super Block is split in two parts: with FS Parameters and

with Status of a Cylinder Group (CG).
! FS Parameters duplicated in each CG for reliability.
! Long file names realized (up to 255 characters) over Linked

List directory structure (before and after file delete) à
! ffs allocated all files in a directory in one CG. To do so, use

a different CG for a newly created directory.
! ffs allocated both inode and data blocks of a file in one CG

for decrease time seek: à
! ffs allocated new blocks of a file are to reduce rotate wait:

6.12 ys©2019Operating System Concepts

File Systems ffs and ufs (Cont.1)
New Features:
! Larger cluster support (0.5-8KiB). Cluster is divided into a number of fragments (2-8) for write up to 8 small files

(minimizing inside fragmentation).
! FFS metadata writes are synchronous for anti-crash. After crash used fsck command.
! File Locking without deadlock detection.
! Quota sub-system add.
! Symbolic (Soft) links add.

Hard links vs Symbolic links

Hard and Symbolic links
creation:
$ ln oldName newName
$ ln -s oldName newName

6.13 ys©2019Operating System Concepts

File Systems extfs, ext2fs
! extfs – Extended FS, 1992
! ext2fs – Extended Second FS, 1993

! Layout of ext2 partition and Block group
! Group Description
! Bitmaps 1Block (1Block=512Byte=4096bit)
! Inode Description

ext3 add

6.14 ys©2019Operating System Concepts

File Systems ext2fs (Cont.1)

0
FileType
Unknown

1 (-) Regular File

2 (d) Directory

3 (c) Character Device

4 (b) Block Device

5 (p) Named pipe

6 (s) Socket

7 (l) Symbolic Link

! Directory Structure ext2fs

! Locating a file /home/ealtieri/hello.txt

6.15 ys©2019Operating System Concepts

File Systems ex3tfs, ext4fs
! ext3fs – Extended Third FS +journaling , 2001
! Disadvantages of extfs, ext2fs, ext3fs:

! - block allocation
! - max blocks numbers= 2ˆ32
! - max fs size= 32TB
! - 32 bit inode max time 18.01.2038
! - max 31998 subdirectories

! ext4fs – Extended Fourth FS, 2008
! Advantages of ext4fs:

! + max block numbers= 2ˆ48
! + max fs size=1EB=2ˆ10PB=2ˆ20TB
! + unlimited subdirectory numbers
! + extents mapping on double and triple indirect
! + inode size= 256 byte à
! + nanoseconds
! + inode versions
! + extend attributes

! Future for Linux FS à BtrFS

! ext4fs extent tree layout

! Comparison ext2/3/4fs

6.16 ys©2019Operating System Concepts

Linux File Systems Comparison

! Comparison of file systems https://en.wikipedia.org/wiki/Comparison_of_file_systems

https://en.wikipedia.org/wiki/Comparison_of_file_systems

6.17 ys©2019Operating System Concepts

File Systems CP/M
CP/M FS - Control Program for Microcomputers.
! Operating system CP/M from Digital Research (1977) - is the predecessor of IBM/MS-DOS.
! CP/M FS have only one directory, with 32 bytes records.
! File Name Template: 8 + 3 uppercase characters.
! Bitmap of occupied/free blocks is calculated after each reboot and save only in RAM (for 180KiB disk need only

23 bytes array). After shutdown, it is not written to disk.
! Maximum file size 16KB (16 block numbers * 1KB).
! For files up to 32 Kbytes, two records can be used, for up to 48 Kbytes three records, etc.
! The sequence number of the entry is stored in the extent field.
! The user code protects files - the user only works with his files.
! Directory Record Structure:

6.18 ys©2019Operating System Concepts

File Systems FAT-12/16/32/64(exFAT)
Advantages:
! These file systems don’t include a journal, so they’re ideal for external USB drives.
! They’re a de facto standard that every operating system—Windows, macOS, Linux, and other devices—can read.

This makes them the ideal file system to use an external drive for different systems.
! FAT16 max file size = Max Cluster Numbers * Max Cluster Size=216*26KiB=222KiB=4GiB.
! FAT32 is older then exFAT.
! FAT64 (or exFAT) (developed Microsoft 2005) - file system optimized for flash devices, is the ideal option, as it

supports files over 4 GB in size and partitions over 8 TB in size, unlike FAT32.
! Since 08/2019 – start integration exFAT to Linux Kernel.

Disadvantages:
! FAT file systems don’t include a

permission attributes (no local
security, have only network
security).

! FAT-16/32 cannot store a file
larger than 4GB.

! For partition more then 200 MiB
performance with FAT 16/32 will
quickly decrease.

! Less reliability

6.19 ys©2019Operating System Concepts

File Systems FAT-12/16
! FAT FS Structure ! FAT Structure example

! FAT FS Directory Structure (MS-DOS FAT-12,16)

Max File Size =

6.20 ys©2019Operating System Concepts

File Systems FAT-32

! Windows 98 (extFAT-32) Directory Structure (long Name support)

! FAT FS Directory Structure (MS-DOS FAT-12,16)

6.21 ys©2019Operating System Concepts

File Systems ntfs
! ntfs MFT - Master File Table
! Each File has an entry in the Master File table.
! The first entry describes the MFT itself.
! The following are log or Update Sequence Number options.
! The structure can be used NTFSInfo à
! (https://docs.microsoft.com/en-us/sysinternals/downloads/ntfsinfo)

https://docs.microsoft.com/en-us/sysinternals/downloads/ntfsinfo

6.22 ys©2019Operating System Concepts

File Systems ntfs (Cont.1)
! MFT Structure ! MFT Metafiles

6.23 ys©2019Operating System Concepts

File Systems ntfs (Cont.2)
! MFT Record ! MFT Record for a Big File or Directory (extents)

! VCN - Virtual Cluster Number,
! LCN - Logical Cluster Number,
! Extent – (LCNstart, Lenght).

! MFT Record for a Small File or Directory

6.24 ys©2019Operating System Concepts

File Systems ntfs (Cont.3)
! NTFS vs FAT File Search Speed

avgNNumberSeek=LOG2(MDirectorySize)

avgNNumberSeek=LOG2(10240)=13,3

AvgSearchTime = 13,3*12ms=160ms=0,16sec

avgNNumberSeek=MDirectorySize/2

avgNNumberSeek=10240/2=5120

AvgSearchTime = 5120*12ms=61440ms=60sec=1min

ys©2019Operating System Concepts

LINUX FSH
Linux File System Hierarchy (FSH)
Linux File Systems Commands
Linux VFS
Linux Pseudo FS

6.26 ys©2019Operating System Concepts

Linux File System Hierarchy (FSH) Standard

Attention!
FSH

knowledge
is very

Important
Information!

6.27 ys©2019Operating System Concepts

Linux FSH Standard (Cont.1)
! TASK. Use a (cd+ls+tree+cat+more) or mc for exploring FSH on your Linux.
! Describing briefly the purpose of each first level directory

! /bin : All the executable binary programs (file) required during booting, repairing, files required to run into single-user-mode, and other important, basic
commands viz., cat, du, df, tar, rpm, wc, history, etc.

! /boot : Holds important files during boot-up process, including Linux Kernel.
! /dev : Contains device files for all the hardware devices on the machine e.g., cdrom, cpu, etc
! /etc : Contains Application’s configuration files, startup, shutdown, start, stop script for every individual program.
! /home : Home directory of the users. Every time a new user is created, a directory in the name of user is created within home directory which contains

other directories like Desktop, Downloads, Documents, etc. (according with /etc/skeleton configuration)
! /lib : The Lib directory contains kernel modules and shared library images required to boot the system and run commands in root file system.
! /lost+found : This Directory is installed during installation of Linux, useful for recovering files which may be broken due to unexpected shut-down.
! /media : Temporary mount directory is created for removable devices viz., media/cdrom.
! /mnt : Temporary mount directory for mounting file system.
! /opt : Optional is abbreviated as opt. Contains third party application software. Viz., Java, etc.
! /proc : A virtual and pseudo file-system which contains information about running process with a particular Process-id aka pid.
! /root : This is the home directory of root user and should never be confused with ‘/‘
! /run : This directory is the only clean solution for early-runtime-dir problem.
! /sbin : Contains binary executable programs, required by System Administrator, for Maintenance. Viz., iptables, fdisk, ifconfig, swapon, reboot, etc.
! /srv : Service is abbreviated as ‘srv‘. This directory contains server specific and service related files.
! /sys : Modern Linux distrib's include a /sys directory as a virtual filesystem, which stores and allows modification of the devices connected to the system.
! /tmp :System’s Temporary Directory, Accessible by users and root. Stores temporary files for user and system, till next boot.
! /usr : Contains executable binaries, documentation, source code, libraries for second level program.
! /var : Stands for variable. The contents of this file is expected to grow. This directory contains log, lock, spool, mail and temp files.

6.28 ys©2019Operating System Concepts

Linux FSH Standard (Cont.2)
! Linux is a complex system which requires a more complex and efficient way to start, stop, maintain and reboot a system.

There is a well defined special files: configuration files, binaries, man pages, info files, etc. for every process in Linux.
! /boot/vmlinuz : The Linux Kernel file.
! /dev/hda : Device file for the first IDE HDD (Hard Disk Drive)
! /dev/null : A pseudo device, that don’t exist. Sometime garbage output is redirected to /dev/null, so that it gets lost, forever.
! /etc/bashrc : Contains system defaults and aliases used by bash shell.
! /etc/crontab : A shell script to run specified commands on a predefined time Interval.
! /etc/exports : Information of the file system available on network.
! /etc/fstab : Information of Disk Drive and their mount point.
! /etc/group : Information of Security Group.
! /etc/grub.conf : grub bootloader configuration file.
! /etc/init.d : Service startup Script.
! /etc/lilo.conf : lilo bootloader configuration file.
! /etc/hosts : Information of Ip addresses and corresponding host names.
! /etc/hosts.allow : List of hosts allowed to access services on the local machine.
! /etc/host.deny : List of hosts denied to access services on the local machine.
! /etc/inittab : INIT process and their interaction at various run level.
! /etc/issue : Allows to edit the pre-login message.
! /etc/modules.conf : Configuration files for system modules.
! /etc/motd : motd stands for Message Of The Day, The Message users gets upon login.
! /etc/mtab : Currently mounted blocks information.
! /etc/passwd : Contains password of system users in a shadow file, a security implementation.
! /etc/printcap : Printer Information

6.29 ys©2019Operating System Concepts

Linux FSH Standard (Cont.3)
! Linux is a complex system which requires a more complex and efficient way to start, stop, maintain and reboot a system.

There is a well defined special files: configuration files, binaries, man pages, info files, etc. for every process in Linux.
! /etc/profile : Bash shell defaults
! /etc/profile.d : Application script, executed after login.
! /etc/rc.d : Information about run level specific script.
! /etc/rc.d/init.d : Run Level Initialisation Script.
! /etc/resolv.conf : Domain Name Servers (DNS) being used by System.
! /etc/securetty : Terminal List, where root login is possible.
! /etc/skel : Script that populates new user home directory.
! /etc/termcap : An ASCII file that defines the behaviour of Terminal, console and printers.
! /etc/X11 : Configuration files of X-window System.
! /usr/bin : Normal user executable commands.
! /usr/bin/X11 : Binaries of X windows System.
! /usr/include : Contains include files used by ‘c‘ program.
! /usr/share : Shared directories of man files, info files, etc.
! /usr/lib : Library files which are required during program compilation.
! /usr/sbin : Commands for Super User, for System Administration.
! /version : Linux Version Information.
! /var/log/lastlog : log of last boot process.
! /var/log/messages : log of messages produced by syslog daemon at boot.
! /var/log/wtmp : list login time and duration of each user on the system currently.
!

6.30 ys©2019Operating System Concepts

Linux File Systems Commands
! File commands

! pwd
! mkdir - rmdir
! chdir
! ls
! file
! touch
! find
! ln
! cat
! rename
! rm
! mv
! link - unlink
! chown
! chgrp
! chmod
! chattr
! lsattr
! umask

! File system commands
! dd
! du - df
! mount
! umount
! cat /etc/fstab
! cat /etc/mtab
! stat /etc/passwd – info about inode
! stat -f /etc/passwd – info about fs
! fsck – fs check
! fdisk – create, resize, test, list the drive partitions
! partx, parted – create, resize, test, list the drive partitions
! mke2fs /dev/hdb2 [-b 1024|...|4096] – make file system
! tune2fs – fs reconfiguration and info about fs (some pages)
! dump2fs – info about fs (some pages)

! System commands
! clear
! history
! date
! passwd
! exit
! reboot
! poweroff
! man
! ps
! pstree
! kill
! su
! sudo
! lsusb
! lsmod
! modinfo
! rmmod
! modprobe
! udevadm

! Test on your Linux as root (use sudo -i before)
! # fdisk -l or # parted -l
! # stat -f /tmp
! # tune2fs -l /dev/sda1 or # /sbin/dump2fs -h /dev/sda1

6.31 ys©2019Operating System Concepts

Linux VFS
! VFS since UNIX ver. IV.
! First implemented SunOS
! Support all fs: ffs, ufs, ext2fs, ...

! Early UNIX systems could only mount one file system type.
! An object oriented approach is now used UNIX systems.
! A vnode (virtual node) represents a file in the kernel.
! A vfs (virtual file system) represents a file system in the kernel. The vnode (virtual node)

struct contains file-system indepependent attributes and two pointers:
! first pointer to file-system specific inode information;
! second pointer to file-system specific function pointers (shared by each inode of

that file system type).

" The VFS layer is added to the UNIX kernel to allow applications to access different types of FS’s in a
uniform way.

6.32 ys©2019Operating System Concepts

Linux Pseudo FS’s
Pseudo FS - files do not exist on disk; they
are virtual, fake files that the kernel creates
dynamically in memory:
! procfs,
! udev (sysfs, devfs),
! debugfs,
! usbfs,
! swap,
! nfs,
! sockfs,
! fifofs,
! autofs.

6.33 ys©2019Operating System Concepts

Linux Pseudo FS: procfs, sysfs, devfs, swap
prosfs - originally process filesystem
!mounted to /proc.
!each process gets a directory (named by the process id
(pid)) under /proc
!/proc/PID directories you find a few files and links.
! /proc/sys/ - sub-tree allows you edit system information
!/proc example files:
! cpuinfo - Information about CPUs
! filesystems - Current FS supported by the kernel
! interrupts – Info about system interrupts
! meminfo - Info about system memory
! partitions - Info about available system partitions
!procfs info use tools top, ps & sys-call sysctl(), ioctl()

Other commands & files were also included under /proc
for providing system information: cpuinfo, meminfo,
uptime, interrupts, mounts, lsof.

sysfs - intended to provide tree with grouping
information about devices state.
! mounted to /sys
! intended to provide tree with information ab. devices
! created for minimizing big tree of procfs
! one item per file and strict documentation rule
devfs - mapping of real $ pseudo hardware for
work with devices.
! mounted to /dev
! include mem, null, zero, urandom, random,

sda, sda1, tty, char/(null, zero), block/(sda,
sda1)

swap - used as virtual memory and doesn’t have
a file system structure.
! You can’t mount it to view its contents.
! Swap is used as “scratch space” by the Linux

kernel to temporarily store data that can’t fit
in RAM.

! It’s also used for hibernating.
! While Windows stores its paging file as a file

on its main system partition, Linux just
reserves a separate empty partition for swap
space.

Manager udev (old HAL, dbus) event driven and support
sysfs and devfs trees for mapping of real&pseudo devices.

6.34 ys©2019Operating System Concepts

Linux Pseudo FS: Example 1. Exploring procfs
Example 1. Exploring procfs.
! Virtual File System procfs contained information about processes and other system information.
! procfs is mapped to /proc and mounted at boot time.
! Information about any files is available in the man page by running:

$ man 5 proc (and after search /proc/<filename>)
! For read info from /proc files use or mc-viewer, or command cat:

$ cat /proc/<filename>
! Quick info about /proc’s files:

! /proc/cmdline – Kernel command line information.
! /proc/console – Information about current consoles including tty.
! /proc/devices – Device drivers currently configured for the running kernel.
! /proc/loadavg – System load average.
! /proc/locks – Files currently locked by kernel.
! /proc/modules – Currently loaded kernel modules.
! /proc/mounts – List of all mounts in use by system.
! /proc/pci – Information about every PCI device.
! /proc/stat – Record or various statistics kept from last reboot.
! /proc/swap – Information about swap space.
! /proc/uptime – System uptime information (in seconds).
! /proc/version – Kernel version, gcc version, and Linux distribution installed.

! /proc/PID interesting folders, files, links:
! fd - file descriptors (0,1,2,…)

! environ - environmental variables
! cmdline – process command line
! io – input-output statistics
! limits – process limits
! mounts – process related information

! cwd – link to current work directory
! exe – link to process executable file
! root - link to process work directory

6.35 ys©2019Operating System Concepts

Linux Pseudo FS: Example 2. Exploring sysfs
Example 2. Exploring sysfs with mc-viewer (Use interesting directory and: <F9> à Right à Quick View)

/sys/class/net/eth0/address

6.36 ys©2019Operating System Concepts

Linux Pseudo FS: Example 3. Exploring devfs
Example 3. Exploring devfs with command line (Use: cd, ls, head, cat).

ys©2019Operating System Concepts

MODERN FS
Journaling FS
Advanced FS
Distributed FS

6.38 ys©2019Operating System Concepts

File Systems Features
More this Features implemented to Modern Advanced FS
! Holes – no store blocks of zeros in a file.
! Journaling
! Compression – transparently compress files.
! Online fsck (File System Check)
! Defragmentation
! De-duplication
! Quotas – you want to keep any one user from filling up the disk
! Encryption
! Undelete
! Secure Delete (Real rewriting Data Block)
! Snapshots (Save state of data block)
! Big Data
! Locking – may want to prevent more than one person writing a file at a time as it can get corrupted

6.39 ys©2019Operating System Concepts

Advanced File Systems
Modern File System include more of features of FS
! WAFL Theoretical (1994)
! WAFL ONTAP (OS Data ONTAP for Filers NetApp) (2003)
! ZFS (Oracle/Sun Microsystem Solaris) (2005)
! BtrFS (Linux/Oracle/Sun Microsystem) (2013)
! ReFS (Microsoft Windows Server) (2012)
! APFS (Apple) (2017)
! HAMMER2 (DragonFlyBSD) (2018)

6.40 ys©2019Operating System Concepts

File Holes File Systems

File Holes
! Why store blocks of zeros in a file? Why not instead note when a file has a ”hole” in it?
! This lets large files that are mostly zeros not take up much space on disk.
! No data blocks are allocated for holes
! Reading the hole returns zeroes.
! Backup programs which work at the file level (and not disk level) will not be aware of the hole and write zeroes.
! A UNIX file may contain holes due to the process issued an seek
! Windows ntfs also support File Holes.

6.41 ys©2019Operating System Concepts

Journaling File Systems

Journaling (or Log structured) file systems record each metadata update to the file system as a transaction.

! Example of journaling FS: ext3/4, ntfs, jfs, xfs, yaffs, f2fs, btrfs, zfs, refs, apfs.
! All transactions are written to a log

! A transaction is considered committed once it is written to the log (sequentially)
! Sometimes to a separate device or section of disk
! However, the file system may not yet be updated

! The transactions in the log are asynchronously written to the file system structures
! When the file system structures are modified, the transaction is removed from the log

! If the file system crashes, all remaining transactions in the log must still be performed
! Faster recovery from crash, removes chance of inconsistency of metadata.

! Every modern file system supports journaling.
! Journaling does slow disk write performance down a tiny bit, but it’s well-worth it on a desktop or laptop.
! File systems that don’t offer journaling are available for use on high-performance servers.

6.42 ys©2019Operating System Concepts

Advanced FS: WAFL FS
! WAFL - Write-anywhere file layout.
! Used on NetApp “Filers” – distributed file system appliances (2001).
! Similar to Berkeley ffs, with extensive modifications

! Used RAID 6DP
! Used Snapshots - data is never modified but copied.

a)Time R/W block << Time R/W file; b)small data à used NVRAM
! Automatic support versioning.

! Random I/O optimized, write optimized
! Used NVRAM for write caching

! Serves up NFS, CIFS, http, ftp.

! The WAFL File Layout:

! Snapshots in WAFL

6.43 ys©2019Operating System Concepts

Advanced FS: ZFS
ZFS - Zettabyte File System advanced OS from Sun/Oracle (2005)
Using the ideas behind WAFL and developed in NetApp, Sun Microsystems created ZFS.
! 128-bit file system.
! Running with (1024 x 3)TB hard drives.
! Not really included in Linux due to licensing issues (CDDL vs GPL2)
! Acts as both the file system *and* the volume manager (RAID array)
! Goals to be super reliable.
! Can take snapshots and can roll back after problem.
! Each file has a checksum, so ZFS can tell if a file is corrupted or not.
! Checksums. Stored in parent. Other fs stores metadata with file, so if that lost then checksum also lost.
! Supports encryption.
! Limitations: needs big of RAM and big of free disk space (due to copies and snapshots). If less than 80% free

space then switch from high-performance mode to space-conserve mode.

6.44 ys©2019Operating System Concepts

Advanced FS: BtrFS
BtrFS – advanced FS for Linux (pronounced “Butter” or “Better” FS) (2013)
! Btrfs, an abbreviation for B-Tree File System, is a FS based on the copy-on-write (COW) principle.
! Initially designed at Oracle Corporation for use in Linux.
! The development of Btrfs began in 2007, and since November 2013 the file system's marked as stable.
! BtrFS supports a lot of advanced features including drive pooling, snapshots, and dynamic disk striping (ZFS

will bring many of these features to Linux by default).

! BtrFS is designed to be a clean break from the Ext series of file systems.
! Ted Ts’o, the maintainer of the Ext4 file system, considers Ext4 a short-term solution and believes BtrFS is the

way forward.

! Expect to see BtrFS become the default in both enterprise server and consumer
desktop Linux distributions in the next few years as it’s further tested!

6.45 ys©2019Operating System Concepts

Advanced FS: ReFS
ReFS - advanced OS from Microsoft (2012)
! Resilient FS - Microsoft’s answer to btrfs and zfs.
! Designed to integrate data protection, snapshots, and silent high-speed background removing of corruption and

data errors.
! Next generation file system after NTFS.
! Added on Windows Server 2012, Windows 8.1 and later.
! All structures 64-bit
! Windows cannot be booted from ReFS.

6.46 ys©2019Operating System Concepts

Advanced FS: APFS
! History Mac’s FS:

! MFS - Macintosh File System (1984, Old Apple)
! HFS - Hierarchical File System (1985, 16bit-address)
! HFS+ (1998, +32bit-address)
! HFSJ (2002, +journal)
! HFSX or APFS (2017, +more features)

APFS - new Apple FS for iOS 10.3 and later (2017)
! Fix core problems of parents HFS+, HFSJ (Hierarchical FS)
! Optimized for SSD (solid-state drive)
! Primary focus on Encryption
! 64-bit i-node numbers
! Data Integrity (Checksums)
! Clones – allow make efficient file copies on the same volume without occupying additional storage space.

Changes to a cloned file are saved as deltas, required for document revisions and copies.
! Crash protection: instead of overwriting metadata, creates new metadata, points to it, and only then removes old

(replaces journaling technology)

6.47 ys©2019Operating System Concepts

Distributed (or Networked) File Systems

Distributed (Networked) File Systems
! Allow a centralized file server to export a file-system to multiple clients.
! Redirecting user to the right copy of data.
! Provide file level access, and raw blocks access.
! Clustered file-systems also exist, where multiple servers work in together.

DFS Architectures
! as Client-Server Architecture (Centralized)

" NFS (Network File System)
" CIFS/SMB

(Windows Common Internet FS/Samba protocol)
" Andrew FS

! as Cluster-Based Arch (Less Centralized)
" GFS (Global File System, Google FS)

! as Symmetric Arch (Fully Distributed)
" DHT-based (Distributed Hash Table)

! Comparison of distributed file systems
https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems

https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems

ys©2019Operating System Concepts

END

