PW-05. LINUX SHELL. FILES GLOBBING & STREAMS REDIRECTION.

1. TARGET.

Learn to use shell file globbing (wildcard);

Learn basic concepts about standard UNIX/Linux streams redirections;

Acquire skills of working with filter-programs.

Get experience in creating composite commands that have a different functional purpose than the original commands.

2. ASSIGNMENTS.

NOTE. Start Your UbuntuMini Virtual Machine on your VirtualBox. You need only Linux Terminal to complete the lab tasks.

Before completing the tasks, make a Snapshot of your Virtual Linux. If there are problems, you can easily go back to working condition!

2.0. Create new User account for this Lab Work.

e Login as student account (user with sudo permissions).
e Create new user account, example stud. Use adduser command. (NOTE. You can use the command “userdel —rf stud” to delete stud
account from your Linux.)

$ sudo adduser stud
e Logout from student account (logout) and login as stud.
2.1. Shell File Globbing Study.
2.2. File Globbing Practice. (Fill in a Table 1 and Table 2)
2.3. Command I/O Redirection Study.
2.4. Redirection Practice. (Fill in a Table 3 and Table 4)

© Yuriy Shamshin, 2026 1/18

3. REPORT.

The report is provided electronic form with Report Blank Form (use a docx).

REPORT FOR PRACTICE WORK 05: LINUX SHELL. FILES GLOBBING & STREAMS REDIRECTION

Student Name Student ID (nV) Date

3.1. Insert Completing Table 1. File globbing understanding.

3.2. Insert Completing Table 2. File globbing creation.

3.3. Insert Completing Table 3. Command I/O redirection understanding.

3.4. Insert Completing Table 4. Command piping understanding.

© Yuriy Shamshin, 2026 2/18

4. GUIDELINES.

4.1. SHELL FILE GLOBBING STUDY.

4.1.1. FILE GLOBBING WILDCARDS DESCRIPTION.

File globbing (or dynamic filename generation) is a feature provided by the UNIX/Linux shell to represent multiple filenames by using
special characters called wildcards with a single file name. A wildcard is essentially a symbol which may be used to substitute for one or
more characters. See the man page of glob(7) for more information. (This is part of LPI topic 1.103.3. - Linux Professionals Institute).

* asterisk

? question mark

[] square brackets

I exclamation mark

a-z and 0-9 ranges

\, ', " preventing file globbing
{} braces

1. Asterisk: *.

The asterisk * is interpreted by the shell as a sign to generate filenames, matching the asterisk to any combination of characters (even
none). When no path is given, the shell will use filenames in the current directory.

S 1s

filel file2 file3 Filed4d File55 FileA fileab Fileab FileAB fileabc
S 1ls File*

File4d File55 FileA Fileab FileAB

S 1s file*

filel file2 file3 fileab fileabc
S 1s *ilebb

Fileb55

S 1ls F*ileb5

Fileb55

S 1ls F*55

Fileb55

$

© Yuriy Shamshin, 2026 3/18

2. Question mark: ?.
The question mark ? is interpreted by the shell as a sign to generate filenames, matching the question mark with exactly one character.

S 1s

filel file2 file3 Filed4d File55 FileA fileab Fileab FileAB fileabc
S 1ls File?

File4d FileA

S 1s Fil?4

Filed

S 1ls Fil??

Filed4d FileA

S 1s File??

Fileb55 Fileab FileAB
$

3. Square brackets: [and].

The square bracket [is interpreted by the shell as a sign to generate filenames, matching any of the characters between [and the first
subsequent]. The order in this list between the brackets is not important. Each pair of brackets is replaced by exactly one character.

S 1s

filel file2 file3 Filed4d File55 FileA fileab Fileab FileAB fileabc
S 1ls File[5A]

FileA

S 1ls File[A5]

FileA

S 1s File[A5] [5b]

Fileb55

$ 1s File[a5] [5b]

Fileb55 Fileab

$ 1s File[a5] [5b] [abcdefghijklm]

1ls: File[ab] [5b] [abcdefghijklm]: No such file or directory
S 1s file[a5] [5b] [abcdefghijklm]

fileabc

© Yuriy Shamshin, 2026 4/18

4. Exclamation mark: !.

You can also exclude characters from a list between square brackets with the exclamation mark !. And you are allowed to make

combinations of these wild cards.

S 1s

filel file2 file3 Filed

$ 1ls file[ab][!Z]
fileab
S 1ls file[!5]*

filel file2 file3 fileab

S 1s file[!5]°?
fileab
$

9. Ranges: A-Z, a-z, 0-9, ...

Fileb5 FileA fileab

fileabc

Fileab

The bash shell will also understand ranges of characters between brackets.

S 1s

filel file3 Fileb55
file2 Filed4d FileA
S 1s filela-z]*

fileab fileab2 fileabc

S 1s file[2-4]
filel filez2 file3

S 1s filel[a-z][a-z][0-9]%*

fileab2
S

FileAB
fileab?2

fileabc

FileAB

fileabc

© Yuriy Shamshin, 2026

5/18

[T

6. Preventing file globbing: \, *’, “".

The screenshot below should be no surprise. The echo * will echo a * when in an empty directory. And it will echo the names of all files
when the directory is not empty.

mkdir test4?2
cd testd?2
echo *

touch file42 file33
echo *
ile33 file4d?2

U Hh U Uy * Uy Ur >

Globbing can be prevented using quotes or by escaping the special characters, as shown in this screenshot.

S echo *
file33 filed?2
$ echo *

echo '*'

$
*
$ echo "*"
*
$

© Yuriy Shamshin, 2026 6/18

7. Braces: {}.

Is often mentioned in conjunction with shell search patterns, even though it is really just a distant relative. In general, a word on the
command line that contains several comma-separated pieces of text within braces is replaced by as many words as there are pieces of
text between the braces, where in each of these words the whole brace expression is replaced by one of the pieces.

S 1s

red.txt yellow.txt blue.txt black.txt
S 1s {red,yellow,black}.txt

red.txt yellow.txt black.txt

This replacement is purely based on the command line text and is completely independent of the existence or non-existence of any
files or directories - unlike search patterns (before), which always produce only those names that actually exist as path names on the
system.

You can have more than one brace expression in a word, which will result in the cartesian product, in other words all possible
combinations (Cartesian Product):

S 1s

al.dat az2.dat a3.dat ad.dat bl.dat b2.dat b3.dat cl.dat c2.dat c3.dat dl.dat d2.dat
S 1ls {a,b,c}{1,2,3}.dat

al.dat az2.dat a3.dat bl.dat b2.dat b3.dat cl.dat c2.dat c3.dat

$

This is useful, for example, to create new directories systematically; the usual search patterns cannot help there, since they can only find
things that already exist:

$ mkdir -p revenue/200{8,9}/qg{l,2,3,4}
S tree revenue
S rm -rd revenue

S

© Yuriy Shamshin, 2026 7/18

4.1.2. FILE GLOBBING PRACTICE.

4.1.2.1. FILL IN THE TABLE.

Table 1. File globbing understanding.

Nr Task Description Your Answer
0 Create a test directory and enter it. Create the following files:
Write directory and files creation
prog.c progl.c progZ2.c progabc.c prog commands
p.txt pl.txt p2l.txt p22.txt p22.dat
Which of these file names match the search patterns?

1 prog*.c
2 prog?.c
3 p?*.txt
4 p[12]*
5 p*
6 L

4.1.2.2. FILL IN THE TABLE.

Table 2. File globbing creation.

Nr

Task Description

Your Answer

0

Create a test directory and enter it. Create the following files:

filel
filelO
filell
file2
File?2
File3
file33
fileAB

Write directory and files creation
commands

© Yuriy Shamshin, 2026

8/18

filea

fileA

fileAAA

file(

file 2 #(the last file name has 6 characters including a space)

What search patterns match these names?

List (with Is) all files starting with file

List (with Is) all files starting with File

List (with Is) all files starting with file and ending in a number

List (with Is) all files starting with file and ending with a letter

List (with Is) all files starting with file and having a digit as fifth character

List (with Is) all files starting with file and having a digit as fifth character and nothing else

List (with Is) all files starting with a letter and ending in a number

| Nl O O & W N -~

List (with Is) all files that have exactly five characters

List (with Is) all files that start with f or F and end with 3 or A

List (with Is) all files that start with f have i or R as second character and end in a number

11

List (with Is) all files that do not start with the letter F

12

List (with Is) all files that do not ending with a letter or number

13

Create new directories tree systematically for CurrentYear/MonthsNumber

use composite command construction from elements: mkdir, "date +%G" and {1,2,3...

12}

14

Create new directories tree systematically for CurrentMonthsName/DaysNumbers

© Yuriy Shamshin, 2026

9/18

4.2. COMMAND /O REDIRECTION STUDY.

4.2.1. COMMAND I/O REDIRECTION DESCRIPTION.

The bash shell, and the other shells employed by Linux allow the user to specify what should happen to the input and output of
programs that run. The bash shell has three basic streams; it takes input from stdin (stream 0), it sends output to stdout (stream 1) and
it sends error messages to stderr (stream 2). The drawing below has a graphical interpretation of these three streams.

stdout (1)

stdin (0)
—_— = Shell command
stderr (2)

The keyboard often serves as stdin, whereas stdout and stderr both go to the display. Redirections with pipes (|) are processed first,
and other redirections (with > and <) are processed from left to right.

The following redirections are possible

Redirection

Effect of redirection

command > file

Output of command goes to file

command > /dev/null

Send output to null. (Discard the output.)

command > /dev/tty1

Send output to terminal number one. (Require root permission)

command 2> file

Errors and diagnostic messages from the command go to a file

command >> file

Output of a command is added to a file (append)

command 2>> file

Errors/diagnostic of a command is added to a file (append)

command > file 2>&1

command >& file

command &> file

Output and errors/diagnostics go to a file

command < file

Command reads input from a file

command << here document

Command reads input from document-is-here construction

command <<< string here

Command reads input from string-is-here construction

commandi | command2

Output from command1 is input for command2 (piping)

command | tee file

Output of a command is copied to stdout and to one or more files

© Yuriy Shamshin, 2026

10/18

1. Stdout: >.
Stdout can be redirected with a greater than sign. While scanning the line, the shell will see the > sign and will clear the file.

The > notation is in fact the abbreviation of 1> (stdout being referred to as stream 1).

S echo It is cold today!

It is cold today!

S echo It is cold today! > winter.txt
S cat winter.txt

It is cold today!

$

Note that the bash shell effectively removes the redirection from the command line before argument 0 is executed. This means that in
the case of this command: "echo hello > greetings.txt", the shell only counts two arguments (echo = argument 0, hello = argument 1). The
redirection is removed before the argument counting takes place.

2. Noclobber prevention of erased exist output file.
Output file is erased

While scanning the line, the shell will see the > sign and will clear the file! Since this happens before resolving argument 0, this
means that even when the command fails, the file will have been cleared!

S cat winter.txt

It is cold today!

S abracadabra It is cold today! > winter.txt
-bash: abracadabra: command not found

S cat winter.txt

S

© Yuriy Shamshin, 2026 11/18

Noclobber set - unset

Erasing a file while using > can be prevented by setting the noclobber option.

S cat winter.txt

It is cold today!

S set -o noclobber

S echo It is cold today! > winter.txt

-bash: winter.txt: cannot overwrite existing file
S set +o noclobber

Overruling noclobber with >|

S set -o noclobber

S echo It is cold today! > winter.txt

-bash: winter.txt: cannot overwrite existing file
S echo It is very cold today! >| winter.txt

S cat winter.txt

It is very cold today!

3. Append: >>.

Use >> to append output to a file.

S echo It is cold today! > winter.txt

S cat winter.txt

It is cold today!

S echo Where is the summer ? >> winter.txt
S cat winter.txt

It is cold today!

Where is the summer °?

S

© Yuriy Shamshin, 2026 12/18

4. Stderr: 2>.
Redirecting stderr is done with 2>. This can be very useful to prevent error/diagnostic messages from cluttering your screen.

The screenshot below shows redirection of stdout to a file, and stderr to /dev/null. Writing 1> is the same as >.

S find / > allfiles.txt 2> /dev/null
$

5. Stderr and stdout: 2>&1.

To redirect both stdout and stderr to the same file, use 2>&1.

$ find / > allfiles and errors.txt 2>&l
$

Note that the order of redirections is significant. For example, the command
ls > dirlist 2>¢&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the file dirlist, while the command
1s 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error made a copy of the standard output before the standard output
was redirected to dirlist.

© Yuriy Shamshin, 2026 13/18

6. Output redirection and pipes: >, >>, |.

By default you cannot grep inside stderr when using pipes on the command line, because only stdout is passed.

S rm filed2 file33 filel201 | grep filed?2

rm: cannot remove ‘file42’: No such file or directory
rm: cannot remove ‘file33’: No such file or directory
rm: cannot remove ‘filel201’: No such file or directory

S

With 2>&1 you can force stderr to go to stdout. This enables the next command in the pipe to act on both streams.

S rm filed42 file33 filel201 2>&1 | grep filed4d?2
rm: cannot remove ‘file42’: No such file or directory

$
You cannot use both 1>&2 and 2>&1 to switch stdout and stderr.

S rm filed2 file33 filel201 2>&1 1>&2 | grep filed?2
rm: cannot remove ‘file42’: No such file or directory
$ echo filed2 2>&l1 1>&2 | sed 's/filed2/FILE42/'
FILE42

$

You need a third stream to switch stdout and stderr after a pipe symbol.

S echo filed2 3>&l1 1>&2 2>&3 | sed 's/file4d42/FILE42/'
filed?2

S rm filed42 3>&1 1>&2 2>&3 | sed 's/filed2/FILE42/'
rm: cannot remove ‘FILE42’: No such file or directory

S

© Yuriy Shamshin, 2026 14/18

7. Joining stdout and stderr: &>.

The &> construction will put both stdout and stderr in one stream (to a file).

$ rm filed42 &> out and err

$ cat out and err

rm: cannot remove ‘file42’: No such file or directory
$ echo filed42 &> out and err

$ cat out and err

filed?2

8. Stdin redirection: <.

Redirecting stdin is done with < (short for 0<).

S cat < text.txt

one

two

S tr 'onetw' 'ONEZZ' < text.txt
ONE

770

9. Document here: <<.

The here document (sometimes called here-is-document) is a way to append input until a certain sequence (usually EOF or other
marker) is encountered. The EOF marker can be typed literally or can be called with Ctrl-D.

cat <<EOF > text.txt
one

two

EOF

cat text.txt

one

two

vV V V

© Yuriy Shamshin, 2026 15/18

10. String here: <<<.

The here string can be used to directly pass strings to a command. The result is the same as using echo string | command (but you
have one less process running).

$ base64 <<< http://sys.academy.lv
aHROcDovL3N5cy5hY2FkZW15Lmx2Cg==
$ baseb64 <<< https://sys.academy.lv
aHROcHM6Ly9zeXMuYWNhzZGVteS5sdgo=

$
S base64d -d <<< aHROcCHM6Ly9zeXMuYWNhZGVteS5sdgo=
https://sys.academy.lv

$

S base64 -d <<< aHROcDovL3N5cy5hY2FkZW15Lmx2Cg==
http://sys.academy.1lv

$

See rfc 3548 for more information about base64.

11. tee.

INPUT % —— OUTPUT
Command tee reads data from standard input and writes them, firstly, to standard output,
and secondly, to one or more files specified in the command; if there is no file, then it is
created; if there is, then it is overwritten. T

To add to the file, use the -a switch (from the word append - add): tee -a file. FILE

S 1ls | tee -a file
S 1ls | tee filel file2 > file3

© Yuriy Shamshin, 2026 16/18

4.2.2. COMMAND |/O REDIRECTION PRACTICE.
4.2.2.1. Fill in the table 3.

When building pipelines (command1 | command?2), for which of the 32 commands below the concepts are appropriate:

both stdin and stdout;
only stdin;

only stdout;

no stdin nor stdout?

pwd, cd, 1ls, mkdir, rmdir, rm, mv, 1n, du, touch, cat, cp, find, more, tail, head, file,
banner, who, id, uname, date, cal, wc, chsh, exec, echo, export, readonly, set, unset, passwd.

Note, a construction below is not considered stdout:

S command --help > file-out

Table 3. Command I/O Redirection understanding.

Have both stdin and stdout Have only stdin Have only stdout No stdin nor stdout

cat pwd cd

© Yuriy Shamshin, 2026 17/18

4.2.2.2. Fillin the table 4.

For the commands (who, wc, pwd, cat, uname, id, echo, banner, passwd, set, more) analyze the existence of all possible combinations of
pipe pairs of the forms: command1 | command2.

$ # Example for checkin

S who

web pts/0 2025-02-03 11:31 (192.168.111.1)
S who | we -1

1

$

Table 4. Command piping understanding.

c1\c2 who wc pwd cat uname id echo banner | passwd set more

who - + - + - - - - - - +

wC

pwd

cat

uname

id

echo

banner

passwd

set

more

© Yuriy Shamshin, 2026 18/18

