LW-03. LINUX/UNIX REGULAR EXPRESSIONS AND FILTERS.

1. TARGET.

e Get the basic concept of regular expressions.
e Learn to use regular expressions in egrep command.
e Acquire skills of working with filter-programs.

2. ASSIGNMENTS.

2.1. Syntax of Regular Expressions.
2.2. The practice of Regular Expressions. (Fill in table 1 and table 2)
2.3. Learning the work of Filter-Command.

3. REPORT.

Make a report about this work and send it to the teacher’s email (use a docx Report Blank).

REPORT FOR LAB WORK 04: UNIX REGULAR EXPRESSIONS AND FILTERS.

Student Name Student ID (nV)

Date

3.0. Generate Your Variant Nr.
3.1. Insert Completing Table 1. Regular Expressions understanding.
3.2. Insert Completing Table 2. Regular Expressions creation.

© Yuriy Shamshin, 2026

1/31

4. GUIDELINES

4.0. GENERATE YOU VARIANT NR.

a) Write your LastName in the letters of the English alphabet. Must be at least 7 letters, if not enough, then add the required number of
letters from the FirstName (if not enough, then repeat LastName and FirstName).

For example, for Yurijs Li there will be LIYURIJS.

b) Replace the first 7 letters with their ordinal numbers in the alphabet.
For example, 12 09 25 21 18 09 10.

c) Consistently add these 7 numbers.

For example, (12 + 09 + 25+ 21 +18 + 09 + 10) = 104

d) The resulting will be your variant Nr.

For example, Variant Nr = 104

© Yuriy Shamshin, 2026 2/31

4.1. SYNTAX REGULAR EXPRESSIONS.

4.1.1. REGULAR EXPRESSIONS DESCRIPTION.
Regular Expressions (REs) definition.

To find some text, sometimes it is necessary to formulate complex queries according to the pattern. Many of the utilities with editing
capabilities use the standard set of special characters when searching for a pattern. A pattern containing such special characters is called
a regular expression (RE - Regular Expression).

The concept arose in the 1950s when the American mathematician Stephen Cole Kleene formalized the description of a regular language.
RE allow you to search for the form: find all four-letter words starting with d; or find all strings containing real numbers; or find all lines
starting with the correct IP address and etc.

Utilities and programs supporting REs:

editors: emacs, vi, vim, ed, sed, ex, emacs;

filters: grep, egrep, more, less;

command processors: Korn Shell;

special tools: expr, less, flex, Expect;

scripting languages: Perl, PHP, Java Script, TCL, Java, Python, awk;
programming environment: Delphi, MS Visual C ++.

Components of REs

escape sequences (meta-sequence);
single characters;

character classes;

quantifiers (or factor, or multiplayer);
fixations or statements symbols;
alternative match patterns;

back references;

additional constructions (re-extensions).

© Yuriy Shamshin, 2026 3/31

4.1.2. REGULAR EXPRESSIONS SYNTAX.
Meta-sequence - several consecutive characters that together form a specially interpreted meaning. For example, “\k” or “\.” or “\\".

Atom - RE element that has a nonzero width: symbol, symbol class, symbol group, meta-sequence forming a symbol. For example, the
element "[@-zA-Z0-9]" or “.” is an atom, and “*” is not an atom.

Basic Regular Expression (BRE) POSIX standard, consists of RE components found in any utility / program that works with RE.

Extended Regular Expression (ERE), special components that are not present in every utility / program that uses the RE mechanism.

4.1.2.1. BASIC REGULAR EXPRESSIONS ELEMENTS.

Element Description

c Character. Simple, not special, symbol. Corresponds to oneself.

clc2c3 Character Sequence. A sequence of consecutive characters that does not form a meta-sequence. Corresponds to itself.
Dot. Any character. Matches any single character.

$ Dollar End of line. If it is at the end of RE or sub-RE, then it corresponds to the position “end of line”.

Caret. Start of line or inverse of class. If it is at the beginning of RE or sub-RE, then it corresponds to the position “beginning
of line”. If it stands first in the description of a character class, it means the inversion of this character class. Otherwise, it
corresponds to itself.

Star Multiplier> = 0. Corresponds to no or more instances of the atom standing directly in front of it.

*

\ Backslash. Very powerful symbol. It can cancel the value of any other metacharacter or, conversely, form a metaserial
together with a suitable character.

[Character class. The character class specified by the enumeration. Inside the class, the action of any metacharacters, except

clc2c3] An o e vy s .

for “A “097, %7 and V7, is canceled. Matches one of the characters listed.

[cl-c2] C_haracter class. A character class defined by a character range from c1 to c2. Matches a single character belonging to a
given range.

[rcle2e3] Character class. Inverse character class specified by enumeration. Matches a single character that does not belong to the
class [c1c2c3].

[rel-c2] Character class. Inverse character class specified by a range of characters. Matches a single character that does not belong

to the class [c1-c2].
[clcZ2-c3c4] Character class. A character class defined in a mixed way.

© Yuriy Shamshin, 2026 4/31

4.1.2.2. EXTENDED REGULAR EXPRESSIONS ELEMENTS.

Element Description

Word Boundaries. Corresponding positions: beginning of the word “\ <”; end of the word “\>”; the whole word is "\ <word \>".
By "word" here is meant a sequence of non-whitened atoms.

Word Boundaries. Corresponds to the position between whitespace and non-whitespace, as well as the position at the

\< and \>

\P beginning or end of a line.
\B Non-word Boundaries.
(and) Buffer grouping.

\(and \) The same as the previous one for BRE mode.

Bar. A disjunction operator (or operation) that allows you to combine any two or more regular subexpressions so that the
resulting regular expression matches any string that matches any of the subexpressions.

\ | The same as the previous one for BRE mode.

+ Plus Multiplier> 0. Corresponds to one or more instances of the atom standing directly in front of it.

\+ The same as the previous one for BRE mode.

? Question Multiplier. Availability factor. Corresponds to no or one instance of the atom standing directly in front of it.
\7? The same as the previous one for BRE mode.

Universal Multiplier. Matches from n to m instances of the atom standing directly in front of it. There are restrictions on the
value of n and m, for example, in perl their value does not exceed 65535. Use cases:
{n} - strictly n repetitions of an atom;
{n,m} {n,} - n or more repetitions of an atom;
{0,} - is equivalent to the factor *;
{1,} - is equivalent to the factor +;
{0,1} - is equivalent to the factor ?.

\{n, m\} The same as the previous one for BRE mode.

Backreference. The operator allows you to access the substring previously stored in the buffer, which coincided with the
subpattern. k is the number of the buffer. In perl k <= 65535, for other programs <= 9.

Character class. A predefined character class. Matches a single character from a named character class. Supports
localization. For example:

[[: alpha:]] - any alphabetic character, ie letter;

[* [: xdigit:]] - any character that is not a hex-digit.

[[:blank:]] — space and tab.

[‘[:lower:]JABC[0-9]] — none lowercase letters and none ABC and none 0-9

\k

[[:class:]]

© Yuriy Shamshin, 2026 5/31

4.1.3. RES EXAMPLES.

Pattern (RE)

example

~“example

examples$

~“example$
\<example\>
example.$
example\.$
Sexample

example”

example*
[eE]xample
example[0-9]
example[*0-9]
example [a-zA-Z]
example[[:alpha:]]
examplel.*example?2
~examplel. *example2$
example\.\.\.$

"3

S

S

X*

XX*

AN\

[0-9]

[0-9]11[0-9]*

A<\ LN

\<.* ([a=z])\1.*\>

Interpretation

example anywhere on the line
example at the beginning of the line
example at the end of the line
example as a separate line
example as a single word

at the end of the line there is example and another character
at the end of the line there is example and another point

character sequence $ and example

sequence of example and character *

example or exampl or exampleeee

example or Example

example followed by one digit

example followed by one non-numeric character
example followed by one latin letter

example follows one letter according to 110n
example1, then 0 or more characters, then example2
the line starts with example1 and ends with example2
at the end of the line example and ellipsis

empty string, because starts and ends right there
non-empty string, i.e. having at least 1 character
any line: empty and nonempty

any line, because any line “begins”

any line, because any line “ends”

line starts with dollar

the line ends with a dollar

any line, since 0 repetitions of X are enough

a line with at least one X

line in which there is \

line in which there is a digit

corresponds to the maximum series of digits

a 4-character word starts and ends with “.”
double word

© Yuriy Shamshin, 2026

6/31

4.1.4. RES INTERACTIVE TUTORIAL.
ASSIGNMENT 0. MAKE RE EXERCISES.

Read, understand and do 15 simple RE exercises and 8 tasks at site https://regexone.com

RegexOne

) e) _) @ Interactive Tutorial [f] References & More
Learn Regular Expressions with simple, interactive exercises.

>[]

Lesson 1: An Introduction, and the ABCs Lesson Notes

. . L. . . abc... Letters
Regular expressions are extremely useful in extracting information from text such as code, log files, spreadsheets, or

even documents. And while there is a lot of theory behind formal languages, the following lessons and examples will
explore the more practical uses of regular expressions so that you can use them as quickly as possible.

The first thing to recognize when using regular expressions is that everything is essentially a character, and we are
writing patterns to match a specific sequence of characters (also known as a string). Most patterns use normal ASCII,

whirch inclitdec lettere digite niuinctuatinn and ather cumhalc nan vaiir kevhnard like %#S@ | hut uinicade characterc

All Lessons

Lesson 1: An Introduction, and the ABCs
Lesson 1%: The 123s

Lesson 2: The Dot

Lesson 3: Matching specific characters
Lesson 4: Excluding specific characters
Lesson 5: Character ranges

Lesson 6: Catching some zzz's

Lesson 7: Mr. Kleene, Mr. Kleene
Lesson 8: Characters optional

Lesson 9: All this whitespace

Lesson 10: Starting and ending

Lesson 11: Match groups

Lesson 12: Nested groups

Lesson 13: More group work

Lesson 14: It's all conditional

Lesson 15: Other special characters
You've finished the tutorial! Lesson X: Infinity and beyond!

© Yuriy Shamshin, 2026 7/31

https://regexone.com/

4.2. THE PRACTICE OF REGULAR EXPRESSIONS.

4.2.1. RES ONLINE CONSTRUCTOR.

ASSIGNMENT 1. FILL IN THE TABLE 1.

Use REs Online Constructor on site https://regexr.com to create and test the REs exercises below Table 1.

URL validation

Menu Expression

Pattern Settings
[(http(s)?):\/\/(www\.)?a-zA-Z0-9@:%._\+~#=]1{2,256}\.[a~2

My Patterns

Cheatsheet e

* H .
RegEx Reference onLine & AesKTop: regexr.com Or daowniLoad TNne aesKtTop ver

Linux
Community Patterns * save your expressions: My Saved expressions are saved lc
*x search Comm https://google.us.edi?34535/534534?dfg=g&fg
Help own

* create Share Links to send your expressions to co-worker
or your blog [ex. http://RegExr.com?2rjl6]

RegExr is an online tool to learn, build, & test
Regular Expressions (RegEx / RegExp). Built by gskinner.com with Flex 3 [adobe.com/go/flex] and
highlighting [gskinner.com/products/spl].

e Supports JavaScript & PHP/PCRE RegEx.
e Results update in real-time as you type. Tools
¢ Roll over a match or expression for details.

Remark 1.

In all of the below, the question is, does the regular expression match the full string.
Slash (/) is the delimiter character showing where the regular expression begins and ends.
Strings to be matched start and end with non-blank characters: there are no leading or trailing blanks.

Remark 2. Select white questions Nr for odd Variant Nr; gray questions Nr for even Variant Nr

© Yuriy Shamshin, 2026 8/31

https://regexr.com/

Table 1. REs understanding.

Nr

1. Which of the following

a)
b)
c)
d)

abababa
aaba
aabbaa
aba
aabababa

. Which of the following

abc
ac
abbb
bbc

. Which of the following

abc

abbbbbbbb

azc

abcbcbcbce

ac
asccbbbbcbcccc

. Which of the following

abc
Xy Z
abc|xyz

. Which of the following

battle!
Hot

green
swamping.
jump up.
undulate?
is.?

Task Description

matches regexp /a(ab)*a/

matches

matches

matches

matches

regexp

regexp

regexp

regexp

/ab+c?/

/a.[bcl+/

/abc|xyz/

/la-z]+[\.\2!]1/

Your Answer (a,b,c,..?)

© Yuriy Shamshin, 2026

9/31

6. Which of the following matches regexp /[a-zA-Z]*[",]1=/
a) Butt=

b) BoOtHEr,=

c) Ample

d) FIADLE7h=

e) Brittle =

f) Other.=

7. 7 Which of the following matches regexp /[a-z][\.\?!]\s+[A-Z]/
(\s matches any space character)

a) A. B

b) c! d

c) e f

d 9. H

e) i? J

f) k L

8. Which of the following matches regexp /(very)+ (fat)?(talllugly) man/
a) very fat man

b) fat tall man

c) very very fat ugly man

d) very very very tall man

9. Which of the following matches regexp /<[">]+>/
a) <an xml tag>

b) <opentag> <closetag>

c) </closetag>

d) <>

g) <with attribute="77">

10. Which of the following matches regexp /\bb[ouly\b/
a) bbouy man

b) bouy man

c) very fat boy man

d) very tall buy

e) tail buoy

© Yuriy Shamshin, 2026 10/31

4.2.2. RES GREP CREATION PRACTICE.

4.2.2.0. EXAMPLES GREP (EGREP) COMMANDS OPTIONS USAGE.

The most common use of grep (egrep) is to filter lines of text containing (or not containing) a certain string. Command egrep — extended grep.

$ cat tennis.txt

Amelie Mauresmo, Fra

Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

Venus Williams, USA

S grep Williams tennis.txt
Serena Williams, usa

Venus Williams, USA

One of the most useful options of grep is grep -i which filters in a case (ignore registry) insensitive way.

S grep Bel tennis.txt
Justine Henin, Bel

S grep -i1i Bel tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel

Another very useful option is grep -v which outputs lines not matching the string.

S grep -v Fra tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA

© Yuriy Shamshin, 2026 11/31

And of course, both options can be combined to filter all lines not containing a case insensitive string.

S grep -vi usa tennis.txt
Amelie Mauresmo, Fra

Kim Clijsters, BEL
Justine Henin, Bel

With grep -A1 one line after the result is also displayed.

S grep -Al Henin tennis.txt
Justine Henin, Bel
Serena Williams, usa

With grep -B1 one line before the result is also displayed.

S grep -Bl Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel

With grep -C1 (context) one line before and one after are also displayed. All three options (A,B, and C) can display any number of lines
(using e.g. A2, B4 or C20).

paul@debianb:~/pipes$ grep -Cl Henin tennis.txt

Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

© Yuriy Shamshin, 2026 12/31

Example of using REs in grep (egrep).
NOTE. Start Your UbuntuMini Virtual Machine on your VirtualBox.

The shell script below shows lines of the file under test that contain syntactically valid IPv4 addresses from 0.0.0.0 to 255.255.255.255,
with possible leading zeros in each octet. The test file is set as a script parameter $1.

Example of test-file content:

Right string. Abcdef 192.168.1.1 dfghj
Bad string. 10.10.10.10asdfgh
Bad string. 192.168.1.256 dfghj

Script execution command:

$./egrep-script test-file

Egrep-script file content:

#!/bin/sh

egrep "\<\
([0-911[0-91[0-9]|[01][0-9]1[0-9]12[0-4][0-9]125[0-5])\.\
([0-911[0-91[0-9]|[01][0-9]1[0-9]12[0-4][0-9]125[0-5])\.\
([0-911[0-91[0-9]|[01][0-9]1[0-9]12[0-4][0-9]125[0-5])\.\
([0-911[0-9]1[0-9]11[01][0-9]1[0-9]12[0-4]1[0-9]]125[0-5])\
\>" $1

Here at the end of each line is the escape character “\” of the line feed character for the shell. This screening works for the shell and allows
you to arrange the RE in several lines, which makes it more readable.

© Yuriy Shamshin, 2026 13/31

4.2.2.1. TIME FINDING.
Select Your sub-task Nr = (Your Variant Nr) mod 4 + 1. Example for Var.Nr=104 > 104 mod 4 +1=0+1=1.

0. Use egrep command for create and test Your REs, allowing to find the correct time in the format Mm.Ss (00.00 — 59.59).
Remark. Create pattern with possible leading zeros in each field (for example, 59.01 or 59.1 or 01.00 or 01.0 or 1.0).

1. Use egrep command for create and test Your REs, allowing to find the correct 24 clock time in the format Hh:Mm:Ss (00:00:00 —
23:59:59).

Remark. Create pattern with required leading zeros in each field (for example, 23:00:07).

2. Use egrep command for create and test Your REs, allowing to find the correct 12 clock time in the format Hh:Mm.Ss (00:00.00 —
11:59.59).

Remark. Create pattern with required leading zeros in each field (for example, 11:00.07).

3. Use egrep command for create and test Your REs, allowing to find the correct 24 clock time in the format Hh:Mm (00:00 - 23:59).
Remark. Create pattern with possible leading zeros in each field (for example, 23:01 or 23:1 or 03:00 or 03:0 or 3:0).

4. Use egrep command for create and test Your REs, allowing to find the correct 12 clock time in the format Hh:Mm (00:00 - 11:59).
Remark. Create pattern with possible leading zeros in each field (for example, 11:01 or 11:1 or 01:00 or 01:0 or 1:0).

© Yuriy Shamshin, 2026 14/31

4.2.2.2. 1P ADDRESS FINDING.
Select Your sub-task Nr = (Your Variant Nr) mod 5 + 1. Example for Var.Nr=104 > 104 mod 5+ 1 =4 +1 = 5.

0. Use egrep command for create and test Your REs, allowing to find the correct IPv4 address that matches with every Class networks
(0.0.0.0-255.255.255.255).

Remark. Create pattern with possible leading zeros in each octet. (See solution example before page).

1. Use egrep command for create and test Your REs, allowing to find the correct IPv4 address that matches all Class A networks
(1.0.0.0-126.255.255.255).

Remark. Create pattern with possible leading zeros in each octet.

2. Use egrep command for create and test Your REs, allowing to find the correct IPv4 address that matches all Class B networks
(128.0.0.0-191.255.255.255).

Remark. Create pattern with possible leading zeros in each octet.

3. Use egrep command for create and test Your REs, allowing to find the correct IPv4 address that matches all Class C networks
(192.0.0.0-223.255.255.255).

Remark. Create pattern with possible leading zeros in each octet.

4. Use egrep command for create and test Your REs, allowing to find the correct IPv4 address that matches all Class D networks
(224.0.0.0-239.255.255.255).

Remark. Create pattern with possible leading zeros in each octet.

5. Use egrep command for create and test Your REs, allowing to find the correct IPv4 address that matches all Class E networks
(240.0.0.0-254.255.255.255).

Remark. Create pattern with possible leading zeros in each octet.

© Yuriy Shamshin, 2026 15/31

4.2.2.3. DATE FINDING.
Select Your sub-task Nr = (Your Variant Nr) mod 6 + 1. Example for Var.Nr=104 > 104 mod 6 +1=2+1 = 3.

1. Use egrep command for create and test Your REs, allowing to find the correct date in the format Dd/Mm/YYyy (21/03/2019).
Remark. Use leap years with 365 days (February is always 28 days). Apply only years between 1000 and 9999. Create pattern with
required leading zeros in each field.

2. Use egrep command for create and test Your REs, allowing to find the correct date in the format YYyy.Mm.Dd (2019.03.21).
Remark. Use leap years with 365 days (February is always 28 days). Apply only years between 1000 and 9999. Create pattern with
required leading zeros in each field.

3. Use egrep command for create and test Your REs, allowing to find the correct date in the format Mm.Dd.yy (03.21.19).

Remark. Use leap years with 365 days (February is always 28 days). Apply only years between 1000 and 9999. Create pattern with
required leading zeros in each field.

4. Use egrep command for create and test Your REs, allowing to find the correct date in the format yy.Mm.Dd (19.03.21).

Remark. Use leap years with 365 days (February is always 28 days). Apply only years between 1000 and 9999. Create pattern with
required leading zeros in each field.

5. Use egrep command for create and test Your REs, allowing to find the correct date in the format YYyyMmDd (20190321).

Remark. Use leap years with 365 days (February is always 28 days). Apply only years between 1000 and 9999. Create pattern with
required leading zeros in each field.

6. Use egrep command for create and test Your REs, allowing to find the correct date in the format DdMmyy (210319).

Remark. Use leap years with 365 days (February is always 28 days). Apply only years between 1000 and 9999. Create pattern with
required leading zeros in each field.

© Yuriy Shamshin, 2026 16/31

4.2.2.4. CREDIT CARD FINDING.
Select Your sub-task Nr = (Your Variant Nr) mod 7 + 1. Example for Var.Nr=104 > 104 mod 7+1=6+1=7.

1. Use egrep command for create and test Your REs, allowing to find the valid New Visa card numbers start with a 4 and have 16 digits.
Visa put digits in sets of 4.

Remark. Create pattern with possible spaces (“ “) or dashes (“-“) in card numbers.

2. Use egrep command for create and test Your REs, allowing to find the valid American Express card numbers start with 34 or 37 and
have 15 digits. Amex use groups of 4-6-5 digits.

Remark. Create pattern with possible spaces (“ “) or dashes (“-“) in card numbers.

3. Use egrep command for create and test Your REs, allowing to find the valid Diners Club card numbers begin with 300 through 305, or
36, or 38. All have 14 digits. Diners Club use groups of 4-6-4 digits.

Remark. Create pattern with possible spaces (“ “) or dashes (“-“) in card numbers.

4. Use egrep command for create and test Your REs, allowing to find the valid Discover card numbers begin with 6011 or 65. All have 16
digits. Discover put digits in sets of 4.

Remark. Create pattern with possible spaces (“ “) or dashes (“-“) in card numbers.

5. Use egrep command for create and test Your REs, allowing to find the valid JCB cards beginning with 2131 or 1800 have 15 digits. JCB
cards beginning with 35 have 16 digits. JCB put digits in sets of 4.
Remark. Create pattern with possible spaces (“ “) or dashes (“-“) in card numbers.

6. Use egrep command for create and test Your REs, allowing to find the valid MasterCard numbers either start with the numbers 51
through 55 or with the numbers 2221 through 2720. All have 16 digits. MasterCard put digits in sets of 4.

Remark. Create pattern with possible spaces (“ “) or dashes (“-“) in card numbers.

7. Use egrep command for create and test Your REs, allowing to find the valid Universal Electronic Card (UEC) numbers either start with
the numbers 7. All have 16 digits. UEC put digits in sets of 4.

Remark. Create pattern with possible spaces (“ “) or dashes (“-“) in card numbers.

© Yuriy Shamshin, 2026 17/31

ASSIGNMENT 2. FILL IN THE TABLE 2.

Table 2. Egrep REs creation.

Nr Your Task Variant Nr and Text Your Answer (RE)
Example For example. For example.
4.2.2.1.0. 0. Use egrep command for create and test Your #!/bin/sh
REs, allowing to find the correct time in the format egrep "\<\
Mm.Ss (00.00 — 59.59). Remark. Create pattern ([0-91110-5110-97)\.\
with possible leading zeros in each field (for ([0-91110-5]1[0-9]\
example, 59.01 or 59.1 or 01.00 or 01.0 or 1.0). \>" $1
4.2.2.2.0. 0. Use egrep command for create and test Your #!/bin/sh
REs, allowing to find the correct IPv4 address that egrep "\<\
matches with every Class networks (0.0.0.0- ([0-911[0-91[0-911[01]1[0-9]1[0-9]112[0-4][0-9]125[0-5]7)\.\
255.255.255.255). Remark. Create pattern with ([0-911[0-91[0-911[01]1[0-9]1[0-9]112[0-4][0-9]125[0-5]7)\.\
possible leading zeros in each octet. (See solution ([0-911[0-9] [0-9][[01][0-9][0-9]12[0-4][0-9]125[0-5])\.\
example before page). ([0-911[0-91[0-9]11[01][0-9]1[0-9]112[0-4][0-9]125[0-5])\
\>" S1
4.2.21. Time finding. Insert the text of your Solution here!
Select Your sub-task Nr = (Your Variant Nr) mod 4 + 1.
Example for Var.Nr =104 > 104 mod4+1=0+1=1.
Place the text of your Task Variant here!
4.2.2.2. |P address finding. Insert the text of your Solution here!
Select Your sub-task Nr = (Your Variant Nr) mod 5 + 1.
Example for Var.Nr =104 > 104 mod 5+ 1=4+1 =5,
Place the text of your Task Variant here!
4.2.2.3. Date finding. Insert the text of your Solution here!
Select Your sub-task Nr = (Your Variant Nr) mod 6 + 1.
Example for Var.Nr =104 > 104 mod 6 +1=2+1=3.
Place the text of your Task Variant here!
4.2.2.4. Credit Card finding. Insert the text of your Solution here!
Select Your sub-task Nr = (Your Variant Nr) mod 7 + 1.
Example for Var.Nr =104 > 104 mod 7+1=6+1=7.
Place the text of your Task Variant here!
© Yuriy Shamshin, 2026 18/31

4.3. LEARNING THE WORK OF FILTER-COMMAND.

Commands that are created to be used with a pipe are often called filters. These filters are very small programs that do one specific thing
very efficiently. They can be used as building blocks. The combination of simple commands and filters in a long pipe allows you to design

elegant solutions.
1. cat, tac

When between two pipes, the cat command does nothing (except putting stdin on stdout). Command tac — revers cat.

$ tac count.txt | cat | cat | cat | cat | cat
four

three

two

one

2. tee

Writing long pipes in Unix is fun, but sometimes you may want intermediate results. This is where tee comes in handy. The tee filter puts

stdin on stdout and also into a file. So tee is almost the same as cat, except that it has two or more identical outputs.

$ tac count.txt | tee temp.txt | tac
one

two

three

four

$ cat temp.txt

four

three

two

one

© Yuriy Shamshin, 2026

19/31

3. cut

The cut filter can select columns from files, depending on a delimiter or a count of bytes. The screenshot below uses cut to filter for the
username and userid in the /etc/passwd file. It uses the colon as a delimiter, and selects fields 1 and 3.

$ cut -d: -f1,3 /etc/passwd | tail -4
Figo:510

Pfaff:511

Harry:516

Hermione:517

S

When using a space as the delimiter for cut, you have to quote the space.

$ cut -d" " -fl tennis.txt
Amelie

Kim

Justine

Serena

Venus

S

This example uses cut to display the second to the seventh character of /etc/passwd.

$ cut -c2-7 /etc/passwd | tail -4
igo:x:
faff:x
arry:x
ermion

S

© Yuriy Shamshin, 2026 20/31

4. tr

You can translate characters with tr. The screenshot shows the translation of all occurrences of e to E.

$ cat tennis.txt | tr 'e' 'E'
AmE1iE MaurEsmo, Fra

Kim ClijstErs, BEL

JustinE HEnin, BEl

SErEna Williams, usa

VEnus Williams, USA

Here we set all letters to uppercase by defi

$ cat tennis.txt | tr 'a-z'

AMELIE MAURESMO, FRA
KIM CLIJSTERS, BEL
JUSTINE HENIN, BEL
SERENA WILLIAMS, USA
VENUS WILLIAMS, USA

Here we translate all newlines to spaces.

$ cat count.txt

one

two

three

four

five

$ cat count.txt | tr '\n' '
one two three four five

S

ning two ranges.

IA_ZI

© Yuriy Shamshin, 2026

21/31

The tr -s filter can also be used to squeeze multiple occurrences of a character to one.

S cat spaces.txt

one two three
four five six
$ cat spaces.txt | tr -s ' !

one two three
four five six

S

You can also use tr to 'encrypt’ texts with rot13.

$ cat count.txt | tr 'a-z' 'nopgrstuvwxyzabcdefghijklm'
or

$ cat count.txt | tr 'a-z' 'n-za-m'

bar

gjb

guerr

sbhe

svir

S

This last example uses tr -d to delete characters.

$ cat tennis.txt | tr -d e
Amli Maursmo, Fra

Kim Clijstrs, BEL

Justin Hnin, Bl

Srna Williams, usa

Vnus Williams, USA

$

© Yuriy Shamshin, 2026 22/31

5. wc

Counting words, lines and characters is easy with wc.

S
S
S

S
S

wc tennis.txt

5 15 100 tennis.txt

wc -1 tennis.txt
tennis.txt

wCc -w tennis.txt

15 tennis.txt

S
S

wCc —-C tennis.txt

100 tennis.txt

S

6. sort

The sort filter will default to an alphabetical sort.

S

cat music.txt

Queen

Brel

Led Zeppelin
Abba

S
S

sort music.txt

Abba

Brel

Led Zeppelin
Queen

S

© Yuriy Shamshin, 2026

23/31

But the sort filter has many options to tweak its usage. This example shows sorting different columns (column 1 or column 2).

$ sort -kl country.txt
Belgium, Brussels, 10
France, Paris, 60
Germany, Berlin, 100
Iran, Teheran, 70
Italy, Rome, 50
Latvia, Riga, 1

$ sort -k2 country.txt
Germany, Berlin, 100
Belgium, Brussels, 10
France, Paris, 60
Latvia, Riga, 1

Italy, Rome, 50

Iran, Teheran, 70

The screenshot below shows the difference between an alphabetical sort and a numerical sort (both on the third column).

$ sort -k3 country.txt
Latvia, Riga, 1
Belgium, Brussels, 10
Germany, Berlin, 100
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70

S sort -n -k3 country.txt
Latvia, Riga, 1
Belgium, Brussels, 10
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
Germany, Berlin, 100

© Yuriy Shamshin, 2026 24/31

7. uniq

With uniq you can remove duplicates from a sorted list.

$ cat music.txt
Queen

Brel

Queen

Abba

$ sort music.txt
Abba

Brel

Queen

Queen

$ sort music.txt |unig
Abba

Brel

Queen

uniq can also count occurrences with the -c option.

$ sort music.txt |unig -c
1 Abba
1 Brel
2 Queen

© Yuriy Shamshin, 2026 25/31

8. comm

Comparing streams (or files) can be done with the comm. By default comm will output three columns. In this example, Bowie and Sweet are
only in the first file, Turner is only in the second, Abba, Cure and Queen are in both lists.

S cat > listl.txt
Abba
Bowie
Cure
Queen
Sweet
S cat > list2.txt
Abba
Cure
Queen
Turner
S comm listl.txt list2.txt
Abba
Bowie
Cure
Queen
Sweet
Turner

The output of comm can be easier to read when outputting only a single column. The digits point out which output columns should not be
displayed.

S comm -12 listl.txt list2.txt
Abba

Cure

Queen

S comm -13 listl.txt list2.txt
Turner

© Yuriy Shamshin, 2026 26/31

9. od

European humans like to work with ascii characters, but computers store files in bytes. The example below creates a simple file, and then
uses od to show the contents of the file in hexadecimal bytes

S cat > text.txt

abcdefgh

12345678

S od -t x1 text.txt

0000000 61 62 63 64 65 66 67 0a 31 32 33 34 35 36 37 Oa
0000020

The same file can also be displayed in octal bytes.

S od -b text.txt
0000000 141 142 143 144 145 146 147 012 061 062 063 064 065 066 067 012
0000020

And here is the file in ascii (or backslashed) characters.

S od -c text.txt
0000000 a b c d e f g \n 1 2 3 4 5) 6 7 \n
0000020

© Yuriy Shamshin, 2026 27/31

10. sed

The stream editor sed can perform editing functions in the stream, using regular expressions.

$ echo level5 | sed 's/5/42/"
leveld?2

$ echo level5 | sed 's/level/jump/'
Jjumpb

Add g for global replacements (all occurrences of the string per line).

$ echo levelb level7 | sed 's/level/jump/'
Jjumpb level?

$ echo levelb level7 | sed 's/level/jump/g'
JumpS Jjump?

With d you can remove lines from a stream containing a character.

$ cat tennis.txt
Venus Williams, USA
Martina Hingis, SUI
Justine Henin, BE
Serena williams, USA
Kim Clijsters, BE
Yanina Wickmayer, BE
$ cat tennis.txt | sed '/BE/d'
Venus Williams, USA
Martina Hingis, SUI
Serena williams, USA

© Yuriy Shamshin, 2026 28/31

4.4. THE PRACTICE OF FILTER-COMMAND.

1. Put a sorted list of all bash users (from /etc/passwd file) in bashusers.txt file.

$ grep bash /etc/passwd | cut -d: -fl | sort > bashusers.txt

2. Put a sorted list of all logged on users (who) in onlineusers.txt.

S who | cut -d' ' -fl | sort > onlineusers.txt

3. Make a list of all flenames in /etc/ directory that contain the string conf in their filename.

$ 1ls /etc | grep conf

4. Make a sorted list of all files in /etc/ directory that contain the registry case insensitive string conf in their filename.

$ 1ls /etc | grep -i conf | sort

5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and the subnet mask.

$ /sbin/ifconfig | head -2 | grep 'inet ' | tr -s ' ' | cut -d' ' -£3,5

6. Write a line that removes all non-letters from a stream.

S cat textl
This is, yes really! , a text with ?&* too many str$ange# characters ;-)

© Yuriy Shamshin, 2026

29/31

$ cat textl | tr -d
This is yes really

LIS FeNSHA; () -

a text with

too many strange characters

7. Write a line that receives a text file, and outputs all words on a separate line.

S cat text?2

it is very cold today without the sun

S cat text2 | tr ' ' '"\n'

it

is

very
cold
today
without
the

sun

8. Write a spell checker on the command line. (There may be a dictionary in /usr/share/dict/ .)

$ echo "The zun is shining today" > text3

$ cat > DICT
is

shining

sun

the

today

S cat text3 | tr 'A-

zun

Z ' 'a-z\n'

sort | unig | comm -23 - DICT

© Yuriy Shamshin, 2026

30/31

You could also add the solution from question number 6 to remove non-letters, and tr -s ' ' to remove redundant spaces.

9. Here’s a way to get a sorted list of the unique file extensions in the current directory, with a count of each type.

ls | rev | cut -d'.' -fl1 | rev | sort | unig -c

There’s a lot going on here.

Is: Lists the files in the directory

rev: Reverses the text in the filenames.

cut: Cuts the string at the first occurrence of the specified delimiter “.”. Text after this is discarded.
rev: Reverses the remaining text, which is the filename extension.

sort. Sorts the list alphabetically.

unig: Counts the number of each unique entry in the list.

The output shows the list of file extensions, sorted alphabetically with a count of each unique type.

dave@howtogeek:~/workS 1s | rev | cut -d'.' -f1 | rev | sort | uniq -c

C
css
desktop
gc
gc_help
ELE
glade#

h

Help
makefile
md

mm

ods

page

[y

(=)}

6
1
1
2
1
1
1
0
1
1
1
1
1
9
6
2
3

4
dave@howtogeek:~/work$ I

© Yuriy Shamshin, 2026 31/31

