1.3 Binary Arithmetic

What you'll learn in Module 1.3 Binary Addition Rules

After studying this section, you should be able Arithmetic rules for bipa_ry numbers are qUit_e
to: straightforward, and similar to those used in
decimal arithmetic. The rules for addition of

Understand the rules used in binary calculations. binary numbers are:

« Addition. . . .
mon Notice that in Fig. 0+0= 0
* Subtraction. 131, 1+1 = (1)0 0+1= 1
requires a ‘carry’ of 1 1+0= 1
Use of carry, borrow & pay back. to the next column. 1+1=(1)0
Understand limitations in binary arithmetic. Remember j[hat binary Fig. 1.3.1 Rules for
« Word length. 10, = 230 decimal. Binary Addition
« Overflow.
Decimal Binary
Example: 2 10
. L . . . : . 1+ 01+
Binary addition is carried out just like decimaly ladding up the Answer 3 1"
columns, starting at the right and working colunyncblumn towards ) .
the left Fig. 1.3.2 Simple

Binary Addition
Just as in decimal addition, it is sometimes neogds use a ‘carry’,

and the carry is added to the next column. For @kann Fig. Decimal Binary

1.3.3 when two ones in the right-most column aeddthe result 3 0011

is 210 or 1Q. The least significant bit of the answer is therefO 1+ 0001+

and the 1 becomes the carry bit to be added td thehe next Carry _ 0110

column. 4 0100
Fig. 1.3.3 Binary

Binary subtraction rules Addition with Carry

The rules for binary subtraction are quite strdmfard except 0-0= 0

that when 1 is subtracted from 0, a borrow mustreated from 0-1= 1%

the next most significant column. This borrow igrihworth 2o 1

or 1 as a 1 bit in the next column to the left is alsvayorth “After 10, is borrowed

twice the value of the column on its right. from naxt column
on left.
Binary Subtraction Fig. 1.3.4 Rules for Binary

The rules for subtraction of binary numbers areiragamilar to Subtraction

decimal. When a large digit is to be subtractedhfeosmaller one, a ‘borrow’ is taken from the next
column to the left. In decimal subtractions theitdigorrowed in’ is worth ten, but in binary
subtractions the ‘borrowed in’ digit must be wo2tlg or binary 16.

After borrowing from the next column to the left)pay back’ must occur. The subtraction rules for
binary are quite simple even if the borrow and pagk system create some difficulty. Depending
where and when you learned subtraction at schanl, may have learned a different subtraction
method, other than ‘borrow and payback’, this isiseml by changing fashions in education.
However any method of basic subtraction will workkhwbinary subtraction but if you do not want

to use ‘borrow and payback’ you will need to apgdyr own subtraction method to the problem.




Fig. 1.3.5 shows how binary subtraction works dytsacting
510 from 1L, in both decimal and binary. Notice that in the
third column from the right & a borrow from the & column

Decimal Binary
Payback Borrow

is made and then paid back in the MSB (lumn. 11 J 011
5= 0'101-
Note: In Fig 1.3.5 a borrow is shown & and a payback is 6 0 110

shown as & Borrowing 1 from the next highest value columr
to the left converts the 0 in th@@lumn into10, and paying  Fig- 1-3.5 Binary Subtraction
back 1 from the Zcolumn to the 2adds 1 to that column,

converting the 0 to .

Once these basic ideas are understood, binaryastibtr is not difficult, but does require some
care. As the main concern in this module is witectbnic methods of performing arithmetic
however, it will not be necessary to carry out namsubtraction of binary numbers using this
method very often. This is because electronic nosthaf subtraction do not use borrow and pay
back, as it leads to over complex circuits and slowaperation. Computers therefore, use methods
that do not involve borrow. These methods will biyfexplained in Number Systems Modules 1.5
to 1.7.

Subtraction Exercise

Just to make sure you understand basic binary alins try the s s,
examples below on paper. Don't use your calculatiack the image == -

to download and print the exercise sheet. Be sorshbw your — s gz,

working, including borrows and paybacks where appate. Using P 't?

the squared paper helps prevent errors by keepmg winary i )

columns in line. This way you will learn about thember systems, i L

not just the numbers. : if.?

Limitations of Binary Arithmetic i f

Now back to ADDITION to illustrate 4.bit Binary  8-bit Binary . *_""

a problem with binary arithmetic. In - o &

Fig. 1.3.6 notice how the carry goeég_ 3. 17- 31- c}

right up to the most significant bit. — - -

This is not a problem with this example as the ansid1Q (10;0)

still fits within 4 bits, but what would happentlie total was greater .

than 15¢? Binary
0111

As shown in Fig 1.3.7 there are cases where a bdrig created that 0011 +

will not fit into the 4-bit binary word. When aritietic is carried out  ~#'"¥ 101

by electronic circuits, storage locations calledisters are used tha —_
can hold only a definite number of bits. If theisdgr can only hold
four bits, then this example would raise a probl&mme final carry bit
is lost because it cannot be accommodated in thé& #degister,
therefore the answer will be wrong.

Fig. 1.3.6 Limits of
4 Bit Arithmetic

To handle larger numbers more bits must be usddpdumatter B;:'::Y
how many bits are used, sooner or later there resa limit. 0001 +
How numbers are held in a computer system depemgdsly on 0

. : ) ) ) Carry (1) 1110
the size of the registers available and the metfistioring data in (1) 0000

them, however any electronic system will have a waly ]
overcoming this ‘overflow’ problem, but will alsoatle some  Fig- 1.3.7 The Overflow
limit to the accuracy of its arithmetic. Problem




Signed Binary Notation

What you’ll learn in Module 1.4

After studying this section, you should be
able to:

Recognise numbers using Signed Binary
Notation.

» |dentify positive binary numbers.

« Identify negative binary numbers.
Understand Signed Binary arithmetic

» Number representation.

« Advantages of Signed Binary for
arithmetic.

» Disadvantages of Signed Binary for
arithmetic.

For example:

+45,0in signed binary is (0)0101191
-455 in signed binary is (1)0101191

Note:

All the binary arithmetic problems looked at in
Module 1.3 used only POSITIVE numbers. The
reason for this is that it is not possible in PUbBtEary

to signify whether a number is positive or negative
This of course would present a problem in any beat t

simplest of arithmetic.

There are a number of ways in which binary numbers
can represent both positive and negative valudst 8
systems all use one bit of the byte to repres¢in¢ei

or — and the remaining 7 bits to give the valuee ©h
the simplest of these systems is SIGNED BINARY,
also often called 'Sign and Magnitude’, which exist
several similar versions, but is commonly an 8 bit
system that uses the most significant bit (msb) to
indicate a positive or a negative value. By conwemt

a 0 in this position indicates that the number gitsg

the remaining 7 bits is positive, and a most sigairft

bit of 1 indicates that the number is negative.

Table 1.4.1
Binary Decimal Signed Binary

11112111 255 -127
11111110[ 254 -126
11111101 253 -125

11111100] 252 -124

The brackets around the msb (the sign bit) areudwd here for —

clarity but brackets are not normally used. Becaudg 7 bits are

used for the actual number, the range of valuessistem can

10000011

131

represent is from —12¢or 11111113, to +127%,.

10000010

130

10000001

129

A comparison between signed binary, pure binary dedimal

10000000

128

numbers is shown in Table 1.4.1. Notice that in slgmed binary

01111111

127

representation of positive numbers betweer, add +127,, all the

01111111

126

positive values are just the same as in pure hildowever the pur

01111101

125

binary values equivalents of +1:380 +253 are now considered t(

)
01111100]

124

represent negative values -0 to —127.

This also means thatfcan be represented by 0000090®hich is
also 0 in pure binary and in decimal) and by 10@09Qwhich is

equivalent to 128 in pure binary and in decimal).

00000011

+3

00000010

+2

00000001

+1

00000000

O | (N |W

+0




Signed Binary Arithmetic

Because the signed binary system now contains posiitive and negative values, calculation
performed with signed binary arithmetic should berenflexible. Subtraction now becomes
possible without the problems of borrow and paybdekcribed in Number Systems Module 1.3.
However there are still problems. Look at the twaraples illustrated in Fig. 1.4.1 and 1.4.2, using
signed binary notation.

Decimal Binary

In Fig. 1.4.1 two positive (msb = 0) numbers ardestl 7 00000111
and the correct answer is obtained. This is ready 5 00000101 +
different to adding two numbers in pure binary as e e
described Number Systems Module 1.3. Carry _ 00001110

12 00001100

Fig. 1.4.1 Adding Positive
Numbers in Signed Binary

In Fig. 1.4.2 however, the negative number -5 ideald Decimal Binary

to +7, the same action in fact as SUBTRACTING 5 7 00000111

from 7, which means that subtraction should beiptess -5+ 10000101 +

by merely adding a negative number to a positive — ey
number. Although this principle works in the decima Carry _ 00001110
version the result using signed binary is 10002160 2 10001100
—-12;0 which of course is wrong, the result of 7 — _. . . .
should be +2. Fig. 1.4.2 Adding Positive & Negative

Numbers in Signed Binary

Although signed binary can represent positive aaglative numbers, if it is used for calculations,
some special action would need to be taken, depgruh the sign of the numbers used, and how
the two values for O are handled, to obtain theembrresult. Whilst signed binary does solve the
problem of REPRESENTING positive and negative numlie binary, and to some extent carrying
out binary arithmetic, there are better sign angmitade systems for performing binary arithmetic.
These systems are the ONES COMPLEMENT and TWOS C@WHEENT systems, which are
described in Number Systems Module 1.5.




1.5 Ones and Twos Complement

What you'll learn in Module 1.5 Ones Complement
After studying this section, you should be | The com_plement_ _(Or opposite) _Of +5 is -5. _When_
able to: representing positive and negative numbers in 8-bit

ones complement binary form, the positive numbers

UIne SHEEME) ees Com plEmeEn meltEion, are the same as in signed binary notation desciibed

« Sign bit. Number Systems Module 1.4 i.e. the numbers 0 to
+127 are represented as 0000G0@6 01111111

* Value range. However, the complement of these numbers, that is

- Ones complement arithmetic. their negative counterparts from -128 to -1, are
represented by ‘complementing’ each 1 bit of the

* End around carry. positive binary number to 0 and each 0 to 1.

Understand ones complement notation. For example:

« Additive inverse +510is 000001041 and

 Twos complement addition. -510is 111110190

* Twos complement subtraction. Notice in the above example, that the most sigaific

bit (msb) in the negative numberg3s 1, just as in
signed binary. The remaining 7 bits of the negative
« Overflow situations. number however are not the same as in signed binary
notation. They are just the complement of the
remaining 7 bits, and these give the value or magdai

of the number.

* Negative results

* Flag registers.

The problem with signed the binary arithmetic digsat in Number Systems Module 1.4 was that it
gave the wrong answer when adding positive and tivegaumbers. Does ones complement
notation give better results with negative numlteas signed binary?

Fig. 1.5.1 shows the result of adding -4 to +6ngsi

ones complement, this is the samesabtracting +4 Decimal Binary
from +6, so it is crucial to arithmetic. +6 00000110
-4+ 11111011+
The result, 0000000Q1s 1o instead of 2. Carry - (1)11111100
This is better than subtraction in signed binany,ibis +2 00000001

still not correct. The result should be;gBut the result
is +1 (notice that there has also been a carry timo
none existent 9th bit).

Fig. 1.5.1 Adding Positive & Negative
Numbers in Ones Complement




Fig. 1.5.2 shows another example, this time adthirg

negative numbers -4 and -3. Decimal Binary

-4 11111011
Because both numbers are negative, they are first -3+ 11111100+
converted to ones complement notation. Carry __ (1)11110000
-1 11110111

+445is 0000010Qin pure 8 bit binary, so

complementing gives 11111011. Fig. 1.5.2 Adding Two Negative

Numbers in Ones Complement

This is =4 in ones complement notation.
+3is 0000001 in pure 8 bit binary, so complementing gives 111101
This is =30 in ones complement notation.

The result of 111101%1is in its complemented form so the 7 bits aftex sign bit (1110111),

should be re-complemented and read as 0001000hwhies the value;8 As the most significant

bit (msb) of the result is 1 the result must beatieg, which is correct, but the remaining sevea bi
give the value of —8. This is still wrong by 1should be -7.

End Around Carry

There is a way to correct this however. Whenewveoties complement system handles negative
numbers, the result is 1 less than it should lge,leinstead of 2 and -8 instead of -7, but another
thing that happens in negative number ones complecadculations is that a carry is ‘left over’
after the most significant bits are added. Inste#gdst disregarding this carry bit, it can be aditie
the least significant bit of the result to corrébat value. This process is called ‘end around tarry
and corrects for the result -1 effect of the or@amement system.

There are however, still problems with both onemglement and signed binary notation. The ones
complement system still has two ways of writing @0000009 = +0 and 111111%%E -0,).
Additionally there is a problem with the way positiand negative numbers are written. In any
number system, the positive and negative versibtiteeassame number should add to produce zero.
As can be seen from Table 1.5.1, adding +45 andnr-dBcimal produces a result of zero, but this
is not the case in either signed binary or onesptement.

Table 1.5.1

Signed Ones
Binary Complement

Decimal

+45 00101101 00101101

-45 10101101 11010010
Binary Sum 11011010 11111111
Decimal Sum 010 —90y0 =127

This is not good enough, however there is a sysit@tovercomes this difficulty and allows correct
operation using both positive and negative numbéris is the Twos Complement system.

Twos Complement Notation
Twos complement notation solves the problem oféfetionship between positive and negative
numbers, and achieves accurate results in sulainacti

To perform binary subtraction the twos complemgsten uses the technique of complementing
the number to be subtracted. In the ones complesystgm this produced a result that was 1 less
than the correct answer, but this could be cordelojeusing the ‘end around carry’ system. This




still left the problem that positive and negativersions of the same number did not produce zero
when added together.

The twos complement system overcomes both of geddems by simply adding one to the ones
complement version of the numbeafore addition takes place. The process of producing a
negative number in Twos Complement Notation istHated in Table 1.5.2.

Table 1.5.2
Producing a Twos Complement Negative Number

+5 in 8-bit binary (or 8-bit Signed Binary) is| 00000101

Complementing to produce the Ones Complement| 11111010
With 1 added 1
So -5 in Twos Complementis| 11111011

This version of -5 now, not only gives the corraoswer Twos
when used in subtractions but is also the additiverse of Complement
+5 i.e. when added to +5 produces the correcttresd@, as Decimal Binary
shown in Fig. 1.5.3 +5 00000101
-5+ 11111011 +
Note that in twos complement the (1) carry from thest Carry _  (1)11111110
significant bit is diskarded as there is no neadtlie ‘end 0 00000000

around carry’ fix. ) ) .
Fig. 1.5.3 Adding a Number to its

Twos Complement Produces Zero

With numbers electronically stored in their twosngement form, subtractions can be carried out
more easily (and faster) as the microprocessosinagly to add two numbers together using nearly
the same circuitry as is used for addition.

6 — 2 = 4 is the same as (+6) + (-2) = 4

Twos Complement Examples

Note: When working with twos complement it is importaotwrite numbers in their full 8 bit
form, since complementing will change any leadingt® into 1 bits, which will be included in
any calculatia. Also during addition, carry bits can extend ifgading O bits or sign bits, a
this can affect the answer in unexpected ways.

Twos Complement Addition Twos
Complement

Fig 1.5.4 shows an example of addition using 8 bit Decimal (Pure)Binary

twos complement notation. When adding two positive 12 00001100
numbers, their sign bits (msb) will both be 0, be t 7+ 00000111 +
numbers are written and added as a pure 8-bityoinar  carry 00011000
addition. 19 00010011

Fig. 1.5.4 Adding Positive Numbers
in Twos Complement




Twos Complement Subtraction

Fig.1.5.5 shows the simplest case of twos Decimal Twos
complement subtraction where one positive number 5 ngﬂzgﬂt Minuend
(the subtrahend) is subtracted from a larger pasiti 10 - 11110101 Subtrahend
number (the minuend). In this case the minuend is 1+ Plus 1
17,0 and the subtrahend is}0 __ (111100010 Carry

7 00000111 Answer

Because the minuend is a positive number its sign b

msb) is 0 and so it can be written as a pure 8 "~
E)inari/ number P Fig. 1.5.5 Subtracting a Positive Number

from a Larger Positive Number

Discarded

The subtrahend is to be subtracted from the minuend
and so needs to be complemented (simple ones coraptgand 1 added to the least significant bit
(Isb) to complete the twos complement and turn i@ -10.

When these three lines of digits, and any carryits are added, remembering that in twos
complement, any carry from the most significant ikitdiskarded. The answer (the difference
between 17 and 10) is 000002 750, which is correct. Therefore the twos complemesthad
has provided correct subtraction by using only @aldiand complementing, both operations that
can be simply accomplished by digital electronrcuits.

Subtraction with a negative result

Some subtractions will of course produce an answith a . .imal Twos

negative value. In Fig. 1.5.6 the result of sulitngc17 from Complement

10 should be - but the twos complement answer ¢ 13 00001010 Minuend

11111003 certainly doesn't look like 46 However the sign =~ 11110110 Subtranend

bit is indicating correctly that the answer is riega so in 00011100 Carry

this case the 7 bits indicating the value of thgatiee answer 3 11111001 Negative

need to be 'twos complemented' once more to seantheer 011111 answer so:

in a recognisable form. Sign bit = Complement
negative 410000110 the 7 value

When the 7 value bits are complemented and 1 ischtiddthe 1+ bits & add 1

least significant bit however, like magic, the amswof 10000111 to confirm.

10000112 appears, which confirms that the original answ Answer was correct, 11111001 is

was in fact =7 in 8 bit twos complement form. -7 in 8 bit twos complement.

Fig. 1.5.6 Subtraction Producing

It seems then, that twos complement will get tijatreanswer a Negative Result

in every situation?

Well guess what — it doesn’'t! There are some cagese even twos complement will give a wrong
answer. In fact there are four conditions where@ng answer may crop up:

1. When adding large positive numbers.
2. When adding large negative numbers.
3. When subtracting a large negative number frdange positive number.

4. When subtracting a large positive number froarge negative number.




The problem seems to be with the word ‘large’. Wisatlarge
depends on the size of the digital word the miasopssor uses fo

Table 1.5.3

calculation. As shown in Table 1.5.3, if the miamgessor uses aifiaa c%-glgt)moesm )
8-bit word, the largest positive number that campeap in the| +127 01111111
problem OR THE RESULT is +12¢ and the largest negative +126 01111110
number will be -128. The range of positive values appears to be 1125 01111101
less than the negative range because 0 is a mostimber in twos
complement and has only one occurrence (00009@Q@he whole +
range of 25, values.

+2 00000010
With a 16-bit word length the largest positive aregdjative numbers| +1 00000001
will be +32767%, and -3276&, but there is still a limit to the larges 0 00000000
number that can appear in a single calculation. -1 11111111

-2 11111110
Overflow Problems. -
Steps can be taken to accommodate large numbetstebking a| 106 10000010
long binary word down into byte sized sections aadying out | -127 10000001
several separate calculations before assemblingfitlaé answer. | -128 10000000
However this doesn’t solve all the cases where®ran occur.
A typical overflow problem that can happen everhwit Decimal Twos
single byte numbers is illustrated in Fig. 1.5.7. Complement

115 01110011

In this example, the two numbers to be added ,GlaBd _91+ 01011011 +
91,0) should give a sum of 2@6and converting 11001110 11100110 Carry

to decimal looks like the correct answer (206 but 208 11001110 Answer = -78

remember that in the 8 bit twos complement systeen

most significant bit is the sign of the number réfere the Sign bit
answer appears to be a negative value and readshghie Fig. 1.5.7 Carry Overflows
lower 7 bits gives 10011310or -78, Although twos into Sign Bit

complement negative answers are not easy to rhedjst
clearly wrong, as the result of adding two positienbers must give a positive answer.

According to the information in Fig 1.5.6, as tmswaer is negative, complementing the lower 7 bits
of 11001119 and adding 1 should reveal the value of the coramswer, but carrying out the
complement+1 on these bits and leaving the msbangdd gives 1011004Which is =5Q,. This

is nothing like the correct answer of 2060 what has happened?

The 8 bit twos complement notation has not workeck tbecause adding 115 + 91 gives a total
greater than +127, the largest value that can laein&-bit twos complement notation.

What has happened is that an overflow has occdreglto a 1 being carried from bit 6 to bit 7 (the
most significant bit, which is of course the sigit),bthis changes the sign of the answer.
Additionally it changes the value of the answerlBg o because that would be the value of the msb
in pure binary. So the original answer of;y8as ‘lost’ 128, to the sign bitThe addition would
have been correct if the sign bit had been pathefvalue, however the calculation was done in
twos complement notation and the sign bit is not pithe value.

Of course in real electronic calculations, a sirmite overflow situation does not usually cause a
problem; computers and calculators can fortunate8t with larger numbers than 127They
achieve this because the microprocessors usedagemmmed to carry out the calculation in a
number of steps, and although each step musbstihrried out in a register having a set word
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length, e.g. 8 bits, 16 bits etc. corrective actian also be taken if an overflow situation is detée
at any stage.

Microprocessors deal with this problem by usingpacsal register called a status register, flag
register or conditions code register, which autarady flags up any problem such as an overflow
or a change of sign that occurs. It also provideeroinformation useful to the programmer, so that
whatever problem occurs; corrective action canaken by software, or in many cases by firmware
permanently embedded within the microprocessoetd with a range of math problems.

Whatever word length the microprocessor is desigoeldandle however, there must always be a
limit to the word length, and so the programmer trhes aware of the danger of errors similar to
that described in Fig. 1.5.7.

A typical flag register is illustrated in Fig. 185and
consists of a single 8-bit storage register loca NIVIXIB|D|I || &
within the microprocessor, in whichsome bits M~ & | 5 | 4 | 3 1 21 1 | 0
be set by software to control the actions of tF~_ ) ) )
microprocessor, and some bits are set automatice Fi9- 1-5-8 Typical 8-bit Flag Register
by the results of arithmetic operations within thieroprocessor.

Typical flags for an 8-bit microprocessor are listed below:
Bit 0 (C) (set by arithmetic result) = 1 Carry heeen created from result msb.

Bit 1 (Z) (set by arithmetic result) = 1 Calculaticesulted in 0.

Bit 2 (1) (set by software) 1 = Interrupt disabRr¢vents software interrupts).

Bit 3 (D) (set by software) 1 = Decimal mode (Cé#dtions are in BCD).

Bit 4 (B) (set by software) 1 = Break (Stops softevaxecution).

Bit 5 (X) Not used on this particular microprocasso

Bit 6 (V) (set by arithmetic result) = 1 Overflovatoccurred (result too big for 8 bits).

Bit 7 (N) (set by arithmetic result) = 1 Negatiesult (msb of result is 1).

It seems therefore, that the only math that mia@ogssors can do is to add together two numbers of
a limited value, and to complement binary numb¥fsll at a basic level this is true, however there
are some additional tricks they can perform, suglstafting all the bits in a binary word left or
right, as a partial aid to multiplication or divasi. However anything more complex must be done
by software.

Subtraction and Division

Subtraction can be achieved by adding positive maghative numbers as described above, and
multiplication in its simplest form can be achieu®dadding a number to itself a number of times,
for example, starting with a total of O, if 5 isd&dl to the total three times the new total will be
fifteen (or 5 x 3). Division can also be accompdidhby repeatedly subtracting (using add) the
divisor from the number to be divided until the eender is zero, or less than the divisor. Counting
the number of subtractions then gives the resolt, exkample if 3 (the divisor) is repeatedly
subtracted from 15, after 5 subtractions the redwairwill be zero and the count will be 5,
indicating that 15 divided by 3 is exactly 5.

There are more efficient methods for carrying auiteaction and division using software, or extra
features within some microprocessors and/or theofisembedded maths firmware.
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1.6 Number Systems Quiz

Try our quiz, based on the information you can fm@digital Electronics Module 1 — Number
Systems

1.
Thenumber.126x 107 writtenin normalisedform representshe number

a) 1260Q0
b) 12.61

) 10.26¢
d) 1111110
2.
Whatis the highestdecimalnumberthatcanbeheldin an8-bit binaryregistef
a) 127

b) 256

) 65536

d) 255

3.

Whatis thedecimalequivaleniof thenumber3A5?

a) 58

b) 39

c) 310

d) 49

4.

0+0= 0 0+0= 0
Refer to Fig. 1.7.1.Which of the tables correctygctibes the rules o0+1= 1 0+1= 1
of binary addition? 1+0= 1 1+0= 1
1+1=(1)1 1+1=(1)0
a) a) b)
b) 0+0= 0 0+0= 1
0+1= 1 0+1= 1
C) 1+0= 1 1+0= 1
1+1= 1 1+1=(1)0
d) c) d)
5 Fig. 1.7.1

V\./hat is the 8 bit binary result of &6~ 310?
a) 00011001
b) 00010101
c) 00110001
d) 00001101
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6.
What would be the result of adding, and —4, using 8 bit signed binary notation?

a) 10000011

b) 00001011

c) 10001011

d) 00000011

7.

What is the widest range of decimal numbers thateawritten in 8 bit signed binary notation?
a) —127 to +127

b) -0 to +256

c) —128 to +128

d) -256 to -1

8.

End around carry is used to correct the resultditeons in which of the following number
systems?

a) 8 bit Signed Binary.
b) 8 bit Ones Complement.
¢) 8 bit TwosComplement

9.

Which of thefollowing Twos Complemenbinarynumbes is equivalento —75;¢?
a) 11001011

b) 01001100

c) 11001100

d) 10110101
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