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1.3 Binary Arithmetic 
Binary Addition Rules 

Arithmetic rules for binary numbers are quite 
straightforward, and similar to those used in 
decimal arithmetic. The rules for addition of 
binary numbers are: 

Notice that in Fig. 
1.3.1, 1+1 = (1)0 
requires a ‘carry’ of 1 
to the next column. 
Remember that binary 
102 = 210 decimal. 

 

 

Example: 

Binary addition is carried out just like decimal, by adding up the 
columns, starting at the right and working column by column towards 
the left. 

Just as in decimal addition, it is sometimes necessary to use a ‘carry’, 
and the carry is added to the next column. For example, in Fig. 
1.3.3 when two ones in the right-most column are added, the result 
is 210 or 102. The least significant bit of the answer is therefore 0 
and the 1 becomes the carry bit to be added to the 1 in the next 
column. 

 
Binary subtraction rules 

The rules for binary subtraction are quite straightforward except 
that when 1 is subtracted from 0, a borrow must be created from 
the next most significant column. This borrow is then worth 210 
or 102 as a 1 bit in the next column to the left is always worth 
twice the value of the column on its right. 

 
Binary Subtraction 

The rules for subtraction of binary numbers are again similar to 
decimal. When a large digit is to be subtracted from a smaller one, a ‘borrow’ is taken from the next 
column to the left. In decimal subtractions the digit ‘borrowed in’ is worth ten, but in binary 
subtractions the ‘borrowed in’ digit must be worth 210 or binary 102.  

After borrowing from the next column to the left, a ‘pay back’ must occur. The subtraction rules for 
binary are quite simple even if the borrow and pay back system create some difficulty. Depending 
where and when you learned subtraction at school, you may have learned a different subtraction 
method, other than ‘borrow and payback’, this is caused by changing fashions in education. 
However any method of basic subtraction will work with binary subtraction but if you do not want 
to use ‘borrow and payback’ you will need to apply your own subtraction method to the problem. 

What you’ll learn in Module 1.3  

After studying this section, you should be able 
to: 

Understand the rules used in binary calculations. 

• Addition. 

• Subtraction. 

• Use of carry, borrow & pay back. 

Understand limitations in binary arithmetic. 

• Word length. 

• Overflow. 

Fig. 1.3.1 Rules for 

Binary Addition 

Fig. 1.3.2 Simple 

Binary Addition 

Fig. 1.3.3 Binary 

Addition with Carry 

Fig. 1.3.4 Rules for Binary 

Subtraction 
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Fig. 1.3.5 shows how binary subtraction works by subtracting 
510 from 1110 in both decimal and binary. Notice that in the 
third column from the right (22) a borrow from the (23) column 
is made and then paid back in the MSB (23) column. 

Note: In Fig 1.3.5 a borrow is shown as 10, and a payback is 
shown as 01. Borrowing 1 from the next highest value column 
to the left converts the 0 in the 22 column into 102 and paying 
back 1 from the 22 column to the 23 adds 1 to that column, 
converting the 0 to 012. 

Once these basic ideas are understood, binary subtraction is not difficult, but does require some 
care. As the main concern in this module is with electronic methods of performing arithmetic 
however, it will not be necessary to carry out manual subtraction of binary numbers using this 
method very often. This is because electronic methods of subtraction do not use borrow and pay 
back, as it leads to over complex circuits and slower operation. Computers therefore, use methods 
that do not involve borrow. These methods will be fully explained in Number Systems Modules 1.5 
to 1.7. 

Subtraction Exercise 

Just to make sure you understand basic binary subtractions try the 
examples below on paper. Don’t use your calculator, click the image 
to download and print the exercise sheet. Be sure to show your 
working, including borrows and paybacks where appropriate. Using 
the squared paper helps prevent errors by keeping your binary 
columns in line. This way you will learn about the number systems, 
not just the numbers.  

Limitations of Binary Arithmetic  

Now back to ADDITION to illustrate 
a problem with binary arithmetic. In 
Fig. 1.3.6 notice how the carry goes 
right up to the most significant bit. 

This is not a problem with this example as the answer 10102 (1010) 
still fits within 4 bits, but what would happen if the total was greater 
than 1510? 

As shown in Fig 1.3.7 there are cases where a carry bit is created that 
will not fit into the 4-bit binary word. When arithmetic is carried out 
by electronic circuits, storage locations called registers are used that 
can hold only a definite number of bits. If the register can only hold 
four bits, then this example would raise a problem. The final carry bit 
is lost because it cannot be accommodated in the 4-bit register, 
therefore the answer will be wrong. 

To handle larger numbers more bits must be used, but no matter 
how many bits are used, sooner or later there must be a limit. 
How numbers are held in a computer system depends largely on 
the size of the registers available and the method of storing data in 
them, however any electronic system will have a way of 
overcoming this ‘overflow’ problem, but will also have some 
limit to the accuracy of its arithmetic. 

Fig. 1.3.6 Limits of 

4 Bit Arithmetic 

Fig. 1.3.7 The Overflow 

Problem 

 

Fig. 1.3.5 Binary Subtraction 
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1.4 Signed Binary 
Signed Binary Notation 

All the binary arithmetic problems looked at in 
Module 1.3 used only POSITIVE numbers. The 
reason for this is that it is not possible in PURE binary 
to signify whether a number is positive or negative. 
This of course would present a problem in any but the 
simplest of arithmetic. 

There are a number of ways in which binary numbers 
can represent both positive and negative values, 8 bit 
systems all use one bit of the byte to represent either + 
or − and the remaining 7 bits to give the value. One of 
the simplest of these systems is SIGNED BINARY, 
also often called 'Sign and Magnitude', which exists in 
several similar versions, but is commonly an 8 bit 
system that uses the most significant bit (msb) to 
indicate a positive or a negative value. By convention, 
a 0 in this position indicates that the number given by 
the remaining 7 bits is positive, and a most significant 
bit of 1 indicates that the number is negative. 

 

 

For example: 

+4510 in signed binary is (0)01011012 

-4510 in signed binary is (1)01011012 

Note: 

The brackets around the msb (the sign bit) are included here for 
clarity but brackets are not normally used. Because only 7 bits are 
used for the actual number, the range of values the system can 
represent is from −12710 or 111111112, to +12710. 

A comparison between signed binary, pure binary and decimal 
numbers is shown in Table 1.4.1. Notice that in the signed binary 
representation of positive numbers between +010 and +12710, all the 
positive values are just the same as in pure binary. However the pure 
binary values equivalents of +12810 to +25510 are now considered to 
represent negative values −0 to −127. 

This also means that 010 can be represented by 000000002 (which is 
also 0 in pure binary and in decimal) and by 100000002 (which is 
equivalent to 128 in pure binary and in decimal). 

 

Table 1.4.1 
Binary Decimal Signed Binary   

11111111 255 −127 
11111110 254 −126 
11111101 253 −125 
11111100 252 −124 

   
10000011 131 −3 
10000010 130 −2 
10000001 129 −1 
10000000 128 −0 

  
  
  
  

− 
  
  
  
  

01111111 127 +127 
01111111 126 +126 
01111101 125 +125 
01111100 124 +124 

   
00000011 3 +3 
00000010 2 +2 
00000001 1 +1 
00000000 0 +0 

  
  
  
  

+ 
  
  
  
  

What you’ll learn in Module 1.4  

After studying this section, you should be 
able to: 

Recognise numbers using Signed Binary 
Notation. 

• Identify positive binary numbers. 

• Identify negative binary numbers. 

Understand Signed Binary arithmetic 

• Number representation. 

• Advantages of Signed Binary for 
arithmetic. 

• Disadvantages of Signed Binary for 
arithmetic. 
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Signed Binary Arithmetic 

Because the signed binary system now contains both positive and negative values, calculation 
performed with signed binary arithmetic should be more flexible. Subtraction now becomes 
possible without the problems of borrow and payback described in Number Systems Module 1.3. 
However there are still problems. Look at the two examples illustrated in Fig. 1.4.1 and 1.4.2, using 
signed binary notation. 

 

In Fig. 1.4.1 two positive (msb = 0) numbers are added 
and the correct answer is obtained. This is really no 
different to adding two numbers in pure binary as 
described Number Systems Module 1.3. 

 
 

 

In Fig. 1.4.2 however, the negative number −5 is added 
to +7, the same action in fact as SUBTRACTING 5 
from 7, which means that subtraction should be possible 
by merely adding a negative number to a positive 
number. Although this principle works in the decimal 
version the result using signed binary is 100011002 or 
−1210 which of course is wrong, the result of 7 − 5 
should be +2. 

 

Although signed binary can represent positive and negative numbers, if it is used for calculations, 
some special action would need to be taken, depending on the sign of the numbers used, and how 
the two values for 0 are handled, to obtain the correct result. Whilst signed binary does solve the 
problem of REPRESENTING positive and negative numbers in binary, and to some extent carrying 
out binary arithmetic, there are better sign and magnitude systems for performing binary arithmetic. 
These systems are the ONES COMPLEMENT and TWOS COMPLEMENT systems, which are 
described in Number Systems Module 1.5. 

Fig. 1.4.1 Adding Positive 

Numbers in Signed Binary 

Fig. 1.4.2 Adding Positive & Negative 

Numbers in Signed Binary 
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1.5 Ones and Twos Complement 
Ones Complement 

The complement (or opposite) of +5 is −5. When 
representing positive and negative numbers in 8-bit 
ones complement binary form, the positive numbers 
are the same as in signed binary notation described in 
Number Systems Module 1.4 i.e. the numbers 0 to 
+127 are represented as 000000002 to 011111112. 
However, the complement of these numbers, that is 
their negative counterparts from −128 to −1, are 
represented by ‘complementing’ each 1 bit of the 
positive binary number to 0 and each 0 to 1.  

For example: 

+510 is 000001012 and 

−510 is 111110102 

Notice in the above example, that the most significant 
bit (msb) in the negative number –510 is 1, just as in 
signed binary. The remaining 7 bits of the negative 
number however are not the same as in signed binary 
notation. They are just the complement of the 
remaining 7 bits, and these give the value or magnitude 
of the number. 

The problem with signed the binary arithmetic described in Number Systems Module 1.4 was that it 
gave the wrong answer when adding positive and negative numbers. Does ones complement 
notation give better results with negative numbers than signed binary? 

 

Fig. 1.5.1 shows the result of adding −4 to +6, using 
ones complement, this is the same as subtracting +4 
from +6, so it is crucial to arithmetic. 

The result, 000000012 is 110 instead of 210.  

This is better than subtraction in signed binary, but it is 
still not correct. The result should be +210 but the result 
is +1 (notice that there has also been a carry into the 
none existent 9th bit). 

What you’ll learn in Module 1.5  

After studying this section, you should be 
able to: 

Understand ones complement notation. 

• Sign bit. 

• Value range. 

• Ones complement arithmetic. 

• End around carry. 

Understand ones complement notation. 

• Additive inverse 

• Twos complement addition. 

• Twos complement subtraction. 

• Negative results 

• Overflow situations. 

• Flag registers. 

 

Fig. 1.5.1 Adding Positive & Negative 

Numbers in Ones Complement 
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Fig. 1.5.2 shows another example, this time adding two 
negative numbers −4 and −3. 

Because both numbers are negative, they are first 
converted to ones complement notation. 

+410 is 000001002 in pure 8 bit binary, so 
complementing gives 11111011.  

 

This is −410 in ones complement notation. 

+3 is 0000001110 in pure 8 bit binary, so complementing gives 11111100.  

This is −310 in ones complement notation. 

The result of 111101112 is in its complemented form so the 7 bits after the sign bit (1110111), 
should be re-complemented and read as 0001000, which gives the value 810. As the most significant 
bit (msb) of the result is 1 the result must be negative, which is correct, but the remaining seven bits 
give the value of −8. This is still wrong by 1, it should be −7. 

End Around Carry 

There is a way to correct this however. Whenever the ones complement system handles negative 
numbers, the result is 1 less than it should be, e.g. 1 instead of 2 and −8 instead of −7, but another 
thing that happens in negative number ones complement calculations is that a carry is ‘left over’ 
after the most significant bits are added. Instead of just disregarding this carry bit, it can be added to 
the least significant bit of the result to correct the value. This process is called ‘end around carry’ 
and corrects for the result −1 effect of the ones complement system. 

There are however, still problems with both ones complement and signed binary notation. The ones 
complement system still has two ways of writing 010 (000000002 = +0 and 111111112 = −02). 

Additionally there is a problem with the way positive and negative numbers are written. In any 
number system, the positive and negative versions of the same number should add to produce zero. 
As can be seen from Table 1.5.1, adding +45 and −45 in decimal produces a result of zero, but this 
is not the case in either signed binary or ones complement.  

Table 1.5.1 

 Decimal Signed 
Binary 

Ones 
Complement 

 +45 00101101 00101101 

 −45 10101101 11010010 

Binary Sum  11011010 11111111 
Decimal Sum 010 −9010 −12710 

This is not good enough, however there is a system that overcomes this difficulty and allows correct 
operation using both positive and negative numbers. This is the Twos Complement system. 

Twos Complement Notation 

Twos complement notation solves the problem of the relationship between positive and negative 
numbers, and achieves accurate results in subtractions. 

To perform binary subtraction the twos complement system uses the technique of complementing 
the number to be subtracted. In the ones complement system this produced a result that was 1 less 
than the correct answer, but this could be corrected by using the ‘end around carry’ system. This 

Fig. 1.5.2 Adding Two Negative 

Numbers in Ones Complement 
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still left the problem that positive and negative versions of the same number did not produce zero 
when added together. 

The twos complement system overcomes both of these problems by simply adding one to the ones 
complement version of the number before addition takes place. The process of producing a 
negative number in Twos Complement Notation is illustrated in Table 1.5.2. 

Table 1.5.2 
Producing a Twos Complement Negative Number 

+5 in 8-bit binary (or 8-bit Signed Binary) is 00000101 
Complementing to produce the Ones Complement 11111010 

With 1 added 1 
So -5 in Twos Complement is 11111011 

 
 

This version of −5 now, not only gives the correct answer 
when used in subtractions but is also the additive inverse of 
+5 i.e. when added to +5 produces the correct result of 0, as 
shown in Fig. 1.5.3 

Note that in twos complement the (1) carry from the most 
significant bit is diskarded as there is no need for the ‘end 
around carry’ fix. 

 

With numbers electronically stored in their twos complement form, subtractions can be carried out 
more easily (and faster) as the microprocessor has simply to add two numbers together using nearly 
the same circuitry as is used for addition. 

6 − 2 = 4 is the same as (+6) + (−2) = 4 

 

Twos Complement Examples 

 

 Twos Complement Addition 

Fig 1.5.4 shows an example of addition using 8 bit 
twos complement notation. When adding two positive 
numbers, their sign bits (msb) will both be 0, so the 
numbers are written and added as a pure 8-bit binary 
addition. 

Fig. 1.5.3 Adding a Number to its 

Twos Complement Produces Zero 

Fig. 1.5.4 Adding Positive Numbers 

in Twos Complement 

Note: When working with twos complement it is important to write numbers in their full 8 bit 
form, since complementing will change any leading 0 bits into 1 bits, which will be included in 
any calculation. Also during addition, carry bits can extend into leading 0 bits or sign bits, and 
this can affect the answer in unexpected ways. 
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Twos Complement Subtraction 

Fig.1.5.5 shows the simplest case of twos 
complement subtraction where one positive number 
(the subtrahend) is subtracted from a larger positive 
number (the minuend). In this case the minuend is 
1710 and the subtrahend is 1010. 

Because the minuend is a positive number its sign bit 
(msb) is 0 and so it can be written as a pure 8 bit 
binary number.  

The subtrahend is to be subtracted from the minuend 
and so needs to be complemented (simple ones complement) and 1 added to the least significant bit 
(lsb) to complete the twos complement and turn +10 into −10. 

When these three lines of digits, and any carry 1 bits are added, remembering that in twos 
complement, any carry from the most significant bit is diskarded. The answer (the difference 
between 17 and 10) is 000001112 = 710, which is correct. Therefore the twos complement method 
has provided correct subtraction by using only addition and complementing, both operations that 
can be simply accomplished by digital electronic circuits. 

Subtraction with a negative result 

Some subtractions will of course produce an answer with a 
negative value. In Fig. 1.5.6 the result of subtracting 17 from 
10 should be −710 but the twos complement answer of 
111110012 certainly doesn’t look like −710. However the sign 
bit is indicating correctly that the answer is negative, so in 
this case the 7 bits indicating the value of the negative answer 
need to be 'twos complemented' once more to see the answer 
in a recognisable form. 

When the 7 value bits are complemented and 1 is added to the 
least significant bit however, like magic, the answer of 
100001112 appears, which confirms that the original answer 
was in fact −7 in 8 bit twos complement form. 

It seems then, that twos complement will get the right answer 
in every situation? 

Well guess what − it doesn’t! There are some cases where even twos complement will give a wrong 
answer. In fact there are four conditions where a wrong answer may crop up: 

1. When adding large positive numbers. 

2. When adding large negative numbers. 

3. When subtracting a large negative number from a large positive number. 

4. When subtracting a large positive number from a large negative number. 

Fig. 1.5.5 Subtracting a Positive Number 

from a Larger Positive Number 

 

Fig. 1.5.6 Subtraction Producing 

a Negative Result 
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The problem seems to be with the word ‘large’. What is large 
depends on the size of the digital word the microprocessor uses for 
calculation. As shown in Table 1.5.3, if the microprocessor uses an 
8-bit word, the largest positive number that can appear in the 
problem OR THE RESULT is +12710 and the largest negative 
number will be -12810. The range of positive values appears to be 1 
less than the negative range because 0 is a positive number in twos 
complement and has only one occurrence (000000002) in the whole 
range of 25610 values. 

With a 16-bit word length the largest positive and negative numbers 
will be +3276710 and -3276810, but there is still a limit to the largest 
number that can appear in a single calculation. 

 

Overflow Problems. 

Steps can be taken to accommodate large numbers, by breaking a 
long binary word down into byte sized sections and carrying out 
several separate calculations before assembling the final answer. 
However this doesn’t solve all the cases where errors can occur.  

A typical overflow problem that can happen even with 
single byte numbers is illustrated in Fig. 1.5.7. 

In this example, the two numbers to be added (11510 and 
9110) should give a sum of 20610 and converting 110011102 
to decimal looks like the correct answer (20610), but 
remember that in the 8 bit twos complement system the 
most significant bit is the sign of the number, therefore the 
answer appears to be a negative value and reading just the 
lower 7 bits gives 10011102 or -7810. Although twos 
complement negative answers are not easy to read, this is 
clearly wrong, as the result of adding two positive numbers must give a positive answer. 

According to the information in Fig 1.5.6, as the answer is negative, complementing the lower 7 bits 
of 110011102 and adding 1 should reveal the value of the correct answer, but carrying out the 
complement+1 on these bits and leaving the msb unchanged gives 101100102 which is −5010. This 
is nothing like the correct answer of 20610 so what has happened? 

The 8 bit twos complement notation has not worked here because adding 115 + 91 gives a total 
greater than +127, the largest value that can be held in 8-bit twos complement notation.  

What has happened is that an overflow has occured, due to a 1 being carried from bit 6 to bit 7 (the 
most significant bit, which is of course the sign bit), this changes the sign of the answer. 
Additionally it changes the value of the answer by 12810 because that would be the value of the msb 
in pure binary. So the original answer of 7810 has ‘lost’ 12810 to the sign bit. The addition would 
have been correct if the sign bit had been part of the value, however the calculation was done in 
twos complement notation and the sign bit is not part of the value. 

Of course in real electronic calculations, a single byte overflow situation does not usually cause a 
problem; computers and calculators can fortunately deal with larger numbers than 12710. They 
achieve this because the microprocessors used are programmed to carry out the calculation in a 
number of steps, and although each step must still be carried out in a register having a set word 

Table 1.5.3 

Decimal 8-bit Twos 
Complement  

+127 01111111 

+126 01111110 

+125 01111101 

  
+2 00000010 

+1 00000001 

0 00000000 

+ 

-1 11111111 

-2 11111110 

  
-126 10000010 

-127 10000001 

-128 10000000 

- 

Fig. 1.5.7 Carry Overflows 

into Sign Bit 
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length, e.g. 8 bits, 16 bits etc. corrective action can also be taken if an overflow situation is detected 
at any stage.  

Microprocessors deal with this problem by using a special register called a status register, flag 
register or conditions code register, which automatically flags up any problem such as an overflow 
or a change of sign that occurs. It also provides other information useful to the programmer, so that 
whatever problem occurs; corrective action can be taken by software, or in many cases by firmware 
permanently embedded within the microprocessor to deal with a range of math problems. 

Whatever word length the microprocessor is designed to handle however, there must always be a 
limit to the word length, and so the programmer must be aware of the danger of errors similar to 
that described in Fig. 1.5.7. 

 A typical flag register is illustrated in Fig. 1.5.8 and 
consists of a single 8-bit storage register located 
within the microprocessor, in which some bits may 
be set by software to control the actions of the 
microprocessor, and some bits are set automatically 
by the results of arithmetic operations within the microprocessor.  

Typical flags for an 8-bit microprocessor are listed below: 

Bit 0 (C) (set by arithmetic result) = 1 Carry has been created from result msb. 

Bit 1 (Z) (set by arithmetic result) = 1 Calculation resulted in 0. 

Bit 2 (I) (set by software) 1 = Interrupt disable (Prevents software interrupts). 

Bit 3 (D) (set by software) 1 = Decimal mode (Calculations are in BCD). 

Bit 4 (B) (set by software) 1 = Break (Stops software execution). 

Bit 5 (X) Not used on this particular microprocessor. 

Bit 6 (V) (set by arithmetic result) = 1 Overflow has occurred (result too big for 8 bits). 

Bit 7 (N) (set by arithmetic result) = 1 Negative result (msb of result is 1). 

It seems therefore, that the only math that microprocessors can do is to add together two numbers of 
a limited value, and to complement binary numbers. Well at a basic level this is true, however there 
are some additional tricks they can perform, such as shifting all the bits in a binary word left or 
right, as a partial aid to multiplication or division. However anything more complex must be done 
by software. 

Subtraction and Division 

Subtraction can be achieved by adding positive and negative numbers as described above, and 
multiplication in its simplest form can be achieved by adding a number to itself a number of times, 
for example, starting with a total of 0, if 5 is added to the total three times the new total will be 
fifteen (or 5 x 3). Division can also be accomplished by repeatedly subtracting (using add) the 
divisor from the number to be divided until the remainder is zero, or less than the divisor. Counting 
the number of subtractions then gives the result, for example if 3 (the divisor) is repeatedly 
subtracted from 15, after 5 subtractions the remainder will be zero and the count will be 5, 
indicating that 15 divided by 3 is exactly 5. 

There are more efficient methods for carrying out subtraction and division using software, or extra 
features within some microprocessors and/or the use of embedded maths firmware. 

Fig. 1.5.8 Typical 8-bit Flag Register 
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1.6 Number Systems Quiz 
Try our quiz, based on the information you can find in Digital Electronics Module 1 − Number 
Systems.
1. 

The number .126 x 102 written in normalised form represents the number: 

a) 1260010

 
b) 12.610

 
c) 10.2610

 
d) 11111102

 
 

2. 

What is the highest decimal number that can be held in an 8-bit binary register?  

a) 127 

b) 256 

c) 65536 

d) 255 

 

3. 

What is the decimal equivalent of the number 3A16?  

a) 58 

b) 39 

c) 310 

d) 49 

 

4. 

Refer to Fig. 1.7.1.Which of the tables correctly describes the rules 
of binary addition?  

a)  

b)  

c)  

d)  
 
5. 

What is the 8 bit binary result of 5610 − 3110?  

a) 000110012 

b) 000101012 

c) 001100012 

d) 000011012 

Fig. 1.7.1 
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6. 

What would be the result of adding 710 and −410 using 8 bit signed binary notation?  

a) 100000112 

b) 000010112 

c) 100010112 

d) 000000112 
 
7. 

What is the widest range of decimal numbers that can be written in 8 bit signed binary notation?  

a) −127 to +127 

b) −0 to +256 

c) −128 to +128 

d) −256 to −1 
 
8. 

End around carry is used to correct the result of additions in which of the following number 
systems?  

a) 8 bit Signed Binary. 

b) 8 bit Ones Complement. 

c) 8 bit Twos Complement. 

 
 

 

 

 

 

9. 

Which of the following Twos Complement binary numbers is equivalent to −7510?  

a) 11001011 

b) 01001100 

c) 11001100 

d) 10110101 




